Типы бесполого размножения: эндомитоз, К-митоз, амитоз — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Типы бесполого размножения: эндомитоз, К-митоз, амитоз

2017-10-17 216
Типы бесполого размножения: эндомитоз, К-митоз, амитоз 0.00 из 5.00 0 оценок
Заказать работу

Жизненный цикл клетки

Жизненным (клеточным) циклом называют период времени от образования клетки до конца ее деления (рис. 1).

 

Рис. 1. Схема жизненного цикла клетки

 

После рождения клетка растет и выполняет свойственные ей функции. Этот период называется G0 . В этот период клетка избирает дальнейшую судьбу: либо погибает, либо вступает в период деления. В непрерывно размножающихся клетках клеточный цикл совпадает в периодом деления, а период покоя отсутствует.

В случае вступления клетки в митотическое деление, она проходит шесть последовательных стадий: интерфазу, профазу, прометафазу, метафазу, анафазу и телофазу. Все эти фазы составляют один цикл деления, разделенный на интерфазу и митоз. Относительная продолжительность указанных периодов различается у организмов отдельных видов и в клетках разных тканей одного индивидуума.

Рис. 2. Продолжительность отдельных фаз жизненного цикла клетки: М – митоз; G1 - пресинтетический период; S — синтетический период; G2 — постсинтетический период; 1 - старая клетка (2n4c); 2- молодые клетки (2n2c)

 

Между двумя последовательными делениями клетки ядро находится в стадии интерфазы. Хотя интерфазу называют иначе стадией покоящегося ядра, на самом деле метаболические процессы в ядре в этот период совершаются с наибольшей активностью: клетка готовится к делению. ДНК реплицируется, накапливаются гистоны (ос­новные белки), из которых построены хромосомы, синтезируются вещества для построения митотического веретена и репродукции центриолей. В ядре в это время хорошо видна сетчатая структура, составленная из тонких нитей – хромосом.

Интерфаза — наиболее продолжительная часть митотиче­ского цикла. В ней различают три периода: пресинтетический (G,), синтетический (S) и постсинтетический (G,), составляющие вместе с митозом полный митотический цикл. Последовательность этих периодов может быть представлена следующим образом: G1→ S→ G2 → M.

Пресинтетический период - фаза G1, (англ, gap интервал)) состоит из подготовки клетки к удвоению ДНК. В этот период происходит интенсивный рост клетки, биосинтез белков, липидов, углеводов и АТФ. В периоде G1 каждая хромосома соматической клетки состоит из одной хроматиды (содержит одну молекулу ДНК), а общее количество генетического материала диплоидного набора хромосом (2n) такой клетки обозначают символом .

Синтетический период (фаза S): совершается репликация всей ядерной ДНК; хромосомы становятся двухроматидными; хроматиды остаются соединенными в центромерной области. После завершения синтеза ДНК и гистонов (в конце S-периода) количественное содержание двухроматидных хромосом и генетического материала клетки можно обозначить формулой 2n4с. Такое количественное соотношение сохраняется в периоде G2, когда в клетке идут метаболические процессы, связанные с ее подготовкой к делению, а также в профазе и метафазе митоза.

Постсинтетический период (фаза G2) — подготовка клетки к делению: удвоение органоидов; синтез белков, липидов, углеводов; синтез АТФ.

После завершения интерфазы клетки вступают в митоз: каждая хромосома разделяется на две хроматиды; они равномерно распределяются между дочерними клетками.

Деление клетки обычно начинается с преобразования ядра, в котором протекают сложные процессы.

Характеристика митоза

Митоз является основой бесполого размножения. При митозе из одной родительской образуются две дочерние клетки с хромосомным набором, идентичным материнскому.

Биологическое значение митоза заключается в увеличении числа клеток организма, что позволяет обеспечивать процессы роста, а также - в замещении клеток истощенных или поврежденных тканей. Таким образом, благодаря митозу обеспечивается функционирование многоклеточного организма.

Дочерние клетки имеют иден­тичные наборы хромосом (т.е. обладают равноценной наследственной информацией) и функционируют как гармоничная часть ткани, органа, организма. На рис. 3 представлена схема митоза.

Рис. 3. Схема митоза. Каждая дочерняя клетка получает полный набор однохроматидных хромосом материнской клетки (формула 2n2с для каждой из дочерних клеток).

 

Характеристика фаз митоза

 

Последовательность фаз митотического цикла представлена на рис. 4.

Рис. 4. Фазы митоза

 

Профаза. В профазе ядро увеличивается, и в нем становятся отчетливо видны хромосомные нити, которые в это время уже спирализованы.

Каждая хромосома после редупликации в интерфазе состоит из двух сестринских хроматид, соединенных одной центроме­рой. В конце профазы обычно исчезают ядерная оболочка и ядрышки. Иногда ядрышко исчезает в следующей фазе митоза. На препаратах всегда можно найти раннюю и позднюю про­фазы и сравнить их между собой. Отчетливо видны изменения: исчезает ядрышко и оболочка ядра. Хромосомные нити более четко видны в поздней профазе, и нередко можно заметить, что они удвоены. В профазе наблюдается также расхождение центриолей, которые образуют два полюса клетки.

Прометафаза начинается с быстрого распада ядерной оболочки на мелкие фрагменты, неотличимые от фрагментов эндоплазматического ретикулума (рис. 5). В хромосомах с каждой стороны центромеры в прометафазе образуются особые структуры, называемые кинетохорами. Они прикрепляются к специальной группе микротрубочек, называемых кинетохорными нитями или кинетохорными микротрубочками. Эти нити отходят от обеих сторон каждой хромосомы, идут в противоположных направлениях и взаимодействуют с нитями биполярного веретена. При этом хромосомы начинают интенсивно двигаться.

 

 

Рис. 5. Прометафаза (выстраивается фигура материнской звезды) в беспигментной клетке. Окраска железным гематоксилином по Гейденгайну. Среднее увеличение

 

Метафаза. После того как исчезнет ядерная оболочка, видно, что хромосомы достигли максимальной спирализации, стали короче и перемещаются к экватору клетки, располагаясь в одной плоскости. Центриоли, находящиеся на полюсах клетки, завершают формирование веретена деления, и его нити присо­единяются к хромосомам в области центромеры. Центромеры всех хромосом находятся в одной экваториаль­ной плоскости, а плечи могут располагаться выше или ниже. Такое положение хромосом удобно для их подсчета и изучения морфологии.

Анафаза начинается с сокращения нитей веретена деления, за счет чего происходит могут располагаться выше или ниже. Все это удобно для подсчета числа хромосом, изучения их морфологии и деления центромер. В анафазе митоза происходит расщепление центромерного участка каждой из двухроматидных хромосом, приводящее к разделению сестринских хроматид и превращению их в самостоятельные хромосомы (формальное соотношение количества хромосом и молекул ДНК — 4n4с).

Так происходит точное распределение генетического материала, и на каждом полюсе оказывается такое же число хромосом, какое было у исходной клетки до их удвоения.

Перемещение хроматид к по­люсам происходит вследствие сокращения тянущихся нитей и удлинения опорных нитей митотического веретена.

Телофаза. После завершения расхождения хромосом к полюсам материнской клетки в телофазе формируются две дочерние клетки, каждая из которых получает полный набор однохроматидных хромосом материнской клетки (формула 2n2с для каждой из дочерних клеток).

В телофазе хромосомы на каждом полюсе пре­терпевают деспирализацию, т.е. процесс, противоположный происходящему в профазе. Контуры хромосом теряют свою четкость, митотическое веретено разрушается, восстанавлива­ется ядерная оболочка и появляются ядрышки. Разделение ядер клетки называется кариокинезом (рис. 6).

Затем, из фрагмопласта формируется клеточная стенка, которая делит все содержимое цитоплазмы на две равные части. Этот процесс называется цитокинезом. Так заканчивается митоз.

Рис. 6. Фазы митоза у различных растений

 

Рис. 7. Распределение гомологичных хромосом и содержащихся в них генов во время митотического цикла у гипотетического организма (2n = 2) поколений и генетическая непрерывность жизни в случае бесполого размножения организмов.

 

Базисные термины и понятия: анафаза; дочерняя клетка; интерфаза; материнская (родительская) клетка; метафаза; митоз (период М); митотический (клеточный) цикл; постсинтетический период(G2); пресинтетический период (G1); профаза; сестринские хроматиды; синтетический период (S); телофаза; хроматида; хроматин; хромосома; центромера.

 

Патологии митоза

При различных повреждениях митотического аппарата клетки возможны следующие типы патологических изменений (рис. 11):

- многополюсный митоз;

- моноцентрическии митоз;

- асимметричный митоз;

- трехгрупповая метафаза;

- метафаза с полярными хромосомами;

- полая метафаза.

 

Многополюсный митоз связан с аномалией развития центриолей. Как следствие этого образуется несколько полюсов и веретен деления. С нарушениями центриолей связан и моноцентрический митоз. При этом образуется только один полюс с веерообраз­ным веретеном и все хромосомы отходят к одному полюсу.

При асимметричном митозе противоположные центры раз­виваются неравномерно.

В случае трехгрупповой метафазы в клетке наблюдается, кроме обычной экваториальной пластинки, две дополнительные группы хромосом у полюсов; либо у полюсов находятся оди­ночные («полярные») хромосомы. Возникает такая патология в результате отставания некоторых хромосом в метакинезе.

Полая метафаза — малоизученная форма патологии митоза. Представляет собой широкое кольцо хромосом, расположенное на периферии клетки.

 

 

Рис. 11. Патологии митоза: а - многополюсный; б - асимметричный; в - моноцентрический; г - трехгрупповая метафаза; д - полая метафаза

 

Эволюция митоза

Главным типом деления ядер простейших, как и ядер много­клеточных, является митоз. Это положение впервые было четко обосновано Белларом, остается в силе и поныне. Основная отличительная черта митоза - закономерное расхождение в дочерние ядра двух копий редуплицированных хромосом (двух ее хроматид). В результате дочерние ядра получают одинаковые полные набо­ры хромосом. В ходе эволюции было несколько типов митозов, которые имели свои отличительные особенности (рис. 12).

Рис. 12. Схемы различных эволюционных типов митоза: а — открытый; б — полузакрытый; в — закрытый внутриядерный; г — открытый внутриядерный

 

Открытый митоз — митоз с распадом ядерной оболочки, термин предложен Дженкинсом.

Ядерная оболочка разрушается.

Ядрышки исчезают.

Веретено деления биполярное.

Центрорганизующее веретено находится в цитоплазме.

 

Полузакрытый митоз — митоз с распадом ядерной оболоч­ки только на полюсах веретена, с образованием «полярных окон».

Ядерная оболочка вокруг веретена сохраняется, за исключением полярных зон, где в оболочке образуются крупные окна или бреши.

Ядрышко растворяется.

Закрытый внутриядерный митоз — митоз без распада ядер­ной оболочки.

Ядерная оболочка сохраняется.

Наблюдается слабая степень конденсации хромосом.

Отсутствует экваториальная пластинка.

Митотический аппарат внутриядерный.

 

Открытый внутриядерный митоз.

Ядерная оболочка сохраняется.

Веретено деления полностью внеядерное.

Экваториальная пластинка отсутствует.

 

«При расхождении хромосомы разбиваются в склеи­вшихся частях и дают начало новым хромосомам, т.к. один отрезок принадлежит одной хромосоме, другой отрезок приклеился от другой хромосомы, так что кроме двух родов гамет, которые получаются при абсолютном сцеплении, появляется еще определенный процент двух гамет, имеющих хромосомы с признаками, принадлежав­шими раньше одной хромосоме».

Т. X. Морган

Мейоз у полиплоидов

Полиплоидия — это геномная мутация, заключающаяся в увеличении числа хромосом, кратного гаплоидному набору. Различают два вида полиплоидии: автополиплоидию и аллополиплоидию. При автополиплоидии повторен один и тот же геном, а при аллополиплоидии — два или более разных генома.

Особенности поведения хромосом в мейозе у автополипло­идов определяются следующим:

индивидуальными особенностями отдельных организмов;

длиной хромосом: более длинные хромосомы чаще фор­мируют поливаленты, чем короткие;

местоположением центромеров, т.к. от них зависит частота образования хиазм;

присутствием В-хромосом. Большое количество добавочных хромосом может вызвать конкуренцию среди А-хромосом за конъюгацию.

Ключевым местом, определяющим поведение хромосом, является стадия метафазы, т.к. здесь происходит коориентация мультивалентов (рис. 10).

Стадия анафазы выявляет все «огрехи» процесса коориентации. Можно наблюдать появление несбалансированных гамет, что приводит к появлению триад, пентад и гексад вместо тетрад. В результате наблюдается снижение фертильности и плодовитости.

Рис. 10. Типы расположения хромосом (три- и квадриваленты) у автополиплоидов: а — линейная; б, в — конвергентная; г — индифферентная; д, e — параллельная; ж — дискордантная.

Картина мейоза у автополиплоидов в конечном итоге идет к стабилизации.

 

Мейоз у гаплоидов

Гаплоиды — организмы с половинным набором генов, одна­ко этого бывает достаточно для реализации полных событий мейоза. Несмотря на то, что мейоз у гаплоидов происходит, тем не менее, он имеет свои отклонения. В метафазе I из-за отсутствия партнеров в большинстве клеток образуются только униваленты, иногда могут встречаться биваленты, но только открытого типа. Как следствие неполноценного синапсиса в метафазе I, в анафазе I хромосомы неравномерно расходятся к полюсам (рис. 11). Чаще всего анафаза I у гаплоидов пред­ставляет собой вереницу делящихся на хроматиды хромосомы с отставшими или убежавшими к полюсам хромосомами, образуются мосты.

а б в г

Рис. 11. Поведение хромосом в анафазе I у гаплоидов: а — норма, равномерное расхождение хроматид к полюсам; б, в — отставшие хроматиды; г — однополюсное расхождение хроматид

 

Второе деление мейоза протекает также аномально: часто происходит только в одном ядре. Как следствие, возникают не тетрады, а триады спор (рис. 12).

 

а б в г

Рис. 12. Стадия тетрад у гаплоидов на примере томатов: а — норма; б — триада; в — диада; г — монада

 

Отличительные особенности поведения хромосом в мейозе у гаплоидов по сравнению с диплоидами состоят в следующем:

не происходит дополнительной репликации ДНК, т.к. количество ее в анафазе I и последующих фазах вплоть до тетрад не увеличивается;

в результате нарушений на различных стадиях мейоза фертильность пыльцы низкая (в среднем 8%).

Сравнение митоза и мейоза

1.МИТОЗ – это деление клетки, при котором происходит равномерное распределение хромосом по дочерним клеткам. Набор хромосом дочерних клеток идентичен материнскому. Митоз характерен для соматических клеток.

МЕЙОЗ – это редукционное деление клетки, при котором у дочерних клеток происходит уменьшение числа хромосом в два раза по сравнению с материнской. В результате мейоза образуются половые клетки.

2.МИТОЗ – основа бесполого размножения, при котором потомство идентично своим родителям. Протекает в одно деление.

МЕЙОЗ – основа полового размножения, при котором потомство отличается от обоих родителей. Протекает в два деления, первое из которых называется редукционным, второе – эквационным.

3.МИТОЗ. Профаза относительно короткая, в ней происходят такие характерные как для митоза, так и для мейоза процессы, как исчезновение ядерной оболочки и утолщение хромосом в результате их спирализации, расхождение центриолей к полюсам клетки.

МЕЙОЗ. Профаза длинная, разделена на ряд подфаз, в ней происходят такие характерные только для мейоза процессы, как коньюгация (синапсис) гомологичных хромосом с образованием бивалентов и кроссинговер (обмен гомологичными участками между гомологичными хромосомами).

4.МИТОЗ. Метафаза митоза - в экваториальной плоскости выстраиваются хромосомы, к центромерам котрых присоединяются нити веретена деления.

МЕЙОЗ. В метафазе 1 в экваториальной плоскости клетки выстраиваются биваленты, к центромерам которых присоединяются нити веретена деления.

5.МИТОЗ. В анафазе каждая хромосома в результате разрыва центромеры разделяется на две сестринские хроматиды, которые расходятся к разным полюсам клетки.

МЕЙОЗ. В анафазе 1 каждый бивалент разрывается на две гомологичные хромосомы, которые отходят к разным полюсам клетки.

6.МИТОЗ. В телофазе число хроматид у каждого полюса идентично числу хромосом материнской клетки.

МЕЙОЗ. Число хромосом у каждого полюса в два раза меньше числа хромосом материнской клетки.

7.МИТОЗ. В интерфазе происходит редупликация (удвоение) ДНК.

МЕЙОЗ. Интерфаза между двумя делениями мейоза называется интеркинезом, удвоение ДНК не происходит.

8.МИТОЗ - Консервативный процесс. Генотип дочерних клеток полностью идентичен генотипу родительской клетки. Клетки, подвергающиеся митозу могут быть как диплоидные, так и гаплоидные.

МЕЙОЗ. Активный процесс. Продуцирует образование новых геномов. Клетки, вступающие в мейоз только диплоидные.

 

Жизненный цикл клетки

Жизненным (клеточным) циклом называют период времени от образования клетки до конца ее деления (рис. 1).

 

Рис. 1. Схема жизненного цикла клетки

 

После рождения клетка растет и выполняет свойственные ей функции. Этот период называется G0 . В этот период клетка избирает дальнейшую судьбу: либо погибает, либо вступает в период деления. В непрерывно размножающихся клетках клеточный цикл совпадает в периодом деления, а период покоя отсутствует.

В случае вступления клетки в митотическое деление, она проходит шесть последовательных стадий: интерфазу, профазу, прометафазу, метафазу, анафазу и телофазу. Все эти фазы составляют один цикл деления, разделенный на интерфазу и митоз. Относительная продолжительность указанных периодов различается у организмов отдельных видов и в клетках разных тканей одного индивидуума.

Рис. 2. Продолжительность отдельных фаз жизненного цикла клетки: М – митоз; G1 - пресинтетический период; S — синтетический период; G2 — постсинтетический период; 1 - старая клетка (2n4c); 2- молодые клетки (2n2c)

 

Между двумя последовательными делениями клетки ядро находится в стадии интерфазы. Хотя интерфазу называют иначе стадией покоящегося ядра, на самом деле метаболические процессы в ядре в этот период совершаются с наибольшей активностью: клетка готовится к делению. ДНК реплицируется, накапливаются гистоны (ос­новные белки), из которых построены хромосомы, синтезируются вещества для построения митотического веретена и репродукции центриолей. В ядре в это время хорошо видна сетчатая структура, составленная из тонких нитей – хромосом.

Интерфаза — наиболее продолжительная часть митотиче­ского цикла. В ней различают три периода: пресинтетический (G,), синтетический (S) и постсинтетический (G,), составляющие вместе с митозом полный митотический цикл. Последовательность этих периодов может быть представлена следующим образом: G1→ S→ G2 → M.

Пресинтетический период - фаза G1, (англ, gap интервал)) состоит из подготовки клетки к удвоению ДНК. В этот период происходит интенсивный рост клетки, биосинтез белков, липидов, углеводов и АТФ. В периоде G1 каждая хромосома соматической клетки состоит из одной хроматиды (содержит одну молекулу ДНК), а общее количество генетического материала диплоидного набора хромосом (2n) такой клетки обозначают символом .

Синтетический период (фаза S): совершается репликация всей ядерной ДНК; хромосомы становятся двухроматидными; хроматиды остаются соединенными в центромерной области. После завершения синтеза ДНК и гистонов (в конце S-периода) количественное содержание двухроматидных хромосом и генетического материала клетки можно обозначить формулой 2n4с. Такое количественное соотношение сохраняется в периоде G2, когда в клетке идут метаболические процессы, связанные с ее подготовкой к делению, а также в профазе и метафазе митоза.

Постсинтетический период (фаза G2) — подготовка клетки к делению: удвоение органоидов; синтез белков, липидов, углеводов; синтез АТФ.

После завершения интерфазы клетки вступают в митоз: каждая хромосома разделяется на две хроматиды; они равномерно распределяются между дочерними клетками.

Деление клетки обычно начинается с преобразования ядра, в котором протекают сложные процессы.

Характеристика митоза

Митоз является основой бесполого размножения. При митозе из одной родительской образуются две дочерние клетки с хромосомным набором, идентичным материнскому.

Биологическое значение митоза заключается в увеличении числа клеток организма, что позволяет обеспечивать процессы роста, а также - в замещении клеток истощенных или поврежденных тканей. Таким образом, благодаря митозу обеспечивается функционирование многоклеточного организма.

Дочерние клетки имеют иден­тичные наборы хромосом (т.е. обладают равноценной наследственной информацией) и функционируют как гармоничная часть ткани, органа, организма. На рис. 3 представлена схема митоза.

Рис. 3. Схема митоза. Каждая дочерняя клетка получает полный набор однохроматидных хромосом материнской клетки (формула 2n2с для каждой из дочерних клеток).

 

Характеристика фаз митоза

 

Последовательность фаз митотического цикла представлена на рис. 4.

Рис. 4. Фазы митоза

 

Профаза. В профазе ядро увеличивается, и в нем становятся отчетливо видны хромосомные нити, которые в это время уже спирализованы.

Каждая хромосома после редупликации в интерфазе состоит из двух сестринских хроматид, соединенных одной центроме­рой. В конце профазы обычно исчезают ядерная оболочка и ядрышки. Иногда ядрышко исчезает в следующей фазе митоза. На препаратах всегда можно найти раннюю и позднюю про­фазы и сравнить их между собой. Отчетливо видны изменения: исчезает ядрышко и оболочка ядра. Хромосомные нити более четко видны в поздней профазе, и нередко можно заметить, что они удвоены. В профазе наблюдается также расхождение центриолей, которые образуют два полюса клетки.

Прометафаза начинается с быстрого распада ядерной оболочки на мелкие фрагменты, неотличимые от фрагментов эндоплазматического ретикулума (рис. 5). В хромосомах с каждой стороны центромеры в прометафазе образуются особые структуры, называемые кинетохорами. Они прикрепляются к специальной группе микротрубочек, называемых кинетохорными нитями или кинетохорными микротрубочками. Эти нити отходят от обеих сторон каждой хромосомы, идут в противоположных направлениях и взаимодействуют с нитями биполярного веретена. При этом хромосомы начинают интенсивно двигаться.

 

 

Рис. 5. Прометафаза (выстраивается фигура материнской звезды) в беспигментной клетке. Окраска железным гематоксилином по Гейденгайну. Среднее увеличение

 

Метафаза. После того как исчезнет ядерная оболочка, видно, что хромосомы достигли максимальной спирализации, стали короче и перемещаются к экватору клетки, располагаясь в одной плоскости. Центриоли, находящиеся на полюсах клетки, завершают формирование веретена деления, и его нити присо­единяются к хромосомам в области центромеры. Центромеры всех хромосом находятся в одной экваториаль­ной плоскости, а плечи могут располагаться выше или ниже. Такое положение хромосом удобно для их подсчета и изучения морфологии.

Анафаза начинается с сокращения нитей веретена деления, за счет чего происходит могут располагаться выше или ниже. Все это удобно для подсчета числа хромосом, изучения их морфологии и деления центромер. В анафазе митоза происходит расщепление центромерного участка каждой из двухроматидных хромосом, приводящее к разделению сестринских хроматид и превращению их в самостоятельные хромосомы (формальное соотношение количества хромосом и молекул ДНК — 4n4с).

Так происходит точное распределение генетического материала, и на каждом полюсе оказывается такое же число хромосом, какое было у исходной клетки до их удвоения.

Перемещение хроматид к по­люсам происходит вследствие сокращения тянущихся нитей и удлинения опорных нитей митотического веретена.

Телофаза. После завершения расхождения хромосом к полюсам материнской клетки в телофазе формируются две дочерние клетки, каждая из которых получает полный набор однохроматидных хромосом материнской клетки (формула 2n2с для каждой из дочерних клеток).

В телофазе хромосомы на каждом полюсе пре­терпевают деспирализацию, т.е. процесс, противоположный происходящему в профазе. Контуры хромосом теряют свою четкость, митотическое веретено разрушается, восстанавлива­ется ядерная оболочка и появляются ядрышки. Разделение ядер клетки называется кариокинезом (рис. 6).

Затем, из фрагмопласта формируется клеточная стенка, которая делит все содержимое цитоплазмы на две равные части. Этот процесс называется цитокинезом. Так заканчивается митоз.

Рис. 6. Фазы митоза у различных растений

 

Рис. 7. Распределение гомологичных хромосом и содержащихся в них генов во время митотического цикла у гипотетического организма (2n = 2) поколений и генетическая непрерывность жизни в случае бесполого размножения организмов.

 

Базисные термины и понятия: анафаза; дочерняя клетка; интерфаза; материнская (родительская) клетка; метафаза; митоз (период М); митотический (клеточный) цикл; постсинтетический период(G2); пресинтетический период (G1); профаза; сестринские хроматиды; синтетический период (S); телофаза; хроматида; хроматин; хромосома; центромера.

 

Типы бесполого размножения: эндомитоз, К-митоз, амитоз

Эндомитоз, или внутреннее деление — это особый тип репли­кации хромосом внутри ядра без развития митотического аппара­та (рис. 8). В таких случаях в клетке происходит внутриядерное кратное увеличение числа хромосом без типичного, отчетливо выраженного деления вещества, которое сопровождается укруп­нением ядра и повышением содержания в нем хроматина.

При эндомитозе после репликации хромосомы вначале спирализуются, становятся отчетливо видимыми, а затем уже расходятся и деспирализуются внутри ядерной оболочки. В про­межутке между делениями ядро выглядит интерфазным.

Рис. 8. Схема эндомитоза

 

Чаще всего эндомитоз наблюдается в дифференцированных клетках растений, а также в клетках пыльника и антипод, и в других специализированных тканях. Очевидно, эндомитоз имеет определенное функциональное значение, при нем деятельность клетки не нарушается. Поэтому в клубнях картофеля, находя­щихся в периоде интенсивного крахмалообразования, митотическое деление заменяется эндомитозом.

Эндомитоз связан с увеличением генетического материала ядра, количества синтезируемых белков и нуклеиновых кислот, а также с усилением роста цитоплазмы, что, естественно, приво­дит к нарушению ядерно-цитоплазменных отношений в клетке. Таким образом, путем эндомитоза клетка из диплоидной пре­вращается в тетраплоидную, октаплоидную и далее, при этом плоидность может увеличиваться до 256 раз. Для установления плоидности таких клеток путем подсчета хромосом необходимо вызвать их деление воздействием различных стимуляторов.

Впервые эндомитоз был описан Мейером в клетках тапетума шпината. Формы эндомитоза весьма разнообразны и недоста­точно изучены. Во время эндомитоза хромосомы проходят весь митотический цикл, но, поскольку веретено деления не образу­ется, все удвоенные (реплицированные) хромосомы остаются в ядре. При этом оболочка ядра и ядрышко сохраняются. Фазы эндомитоза соответственно фазам митоза называются: эндопрофаза; эндометафаза; эндоанафаза; эндотелофаза.

Основные характеристики эндомитоза:

--хромосомы удваиваются и спирализуются;

--ядерная оболочка не разрушается;

--веретено деления не образуется;

--разделение материнской клетки на две дочерние не происходит, поэтому в ней остается удвоенное число хромосом.

 

К-митоз — это искусственный тип митоза, сходный с эндомитозом (рис. 9), но остановка расхождения хромосом может быть вызвана препаратами: колхицином, аценафтеном, колцемидом. К-митоз характеризуется остановкой митоза в метафазе и рассеиванием по цитоплазме удвоенных хромосом. Хромосомы часто утолщены и укорочены: могут быть склеены в виде комковатой массы, иногда их расположение напомина­ет шар или звезду (в последнем случае центромерные участки всех хромосом сгруппированы в центре, а концы обращены к периферии).

Основные черты К-митоза:

--хромосомы удваиваются и спирализуются;

--ядерная оболочка исчезает;

--веретено деления разрушается под действием препаратов;

--разделение материнской клетки на две дочерние не происходит, поэтому в ней остается удвоенное число хромосом.

Рис. 9. Схема К-митоза

 

Амитозом называется деление клетки, находящейся в состо­янии интерфазы (рис. 10). К амитозу относят случаи немитотического деления клетки. При этом не происходит конденсации хромосом, распада ядерной оболочки и образования веретена деления, амитоз осуществляется при вытягивании ядра и его последующем делении на две части. Еще более неупорядоченное дробление ядра на два или более неидентичных комка получило название фрагментации, оно, безусловно, носит патологический характер. Однако между амитозом и фрагментацией резкой и принципиальной границы провести нельзя. Прямое деление впервые было описано Ремаком в 1841 г. у животных и Страсбургером в 1882 г. у растений. Вначале амитоз рассматривали как более примитивную форму деления ядра, в отличие от митоза. Часто амитоз наблюдают в дегенерирующих, не способных к дальнейшему воспроизведению клетках. Например, у растений амитоз обнаружен в клетках отмирающих или временных тка­ней стенок завязи, нуцеллуса, эндосперма, в паренхиме клубней картофеля.

Рис. 10. Схема амитоза

Амитотическое деление обычно начинается с изменений, происходящих с ядрышком, вокруг которого начинает обособ­ляться новое ядро. Как правило, амитотически делящееся ядро находится в состоянии глубокого покоя. Далее между ядрами возникает тонкая клеточная стенка, которая делит цитоплазму на две части. Амитоз не связан с прекращением функциониро­вания делящейся клетки.

Однако увеличение количества ДНК при амитозе обнаружи­вается не во всех делящихся ядрах и, кроме того, неравномерно, в отличие от митоза, при котором всегда происходит кратное увеличение ДНК, что очень важно для оценки функционального значения митоза и амитоза.

Основные черты амитоза:

--хромосомы не спирализуются;

--ядерная оболочка не распадается, веретено деления не образуется;

--увеличение количества ДНК обнаруживается не всегда;

--разделение клетки происходит неравномерно, поэтому дочерние клетки обладают неравноценным генетическим материалом и не идентичны материнской клетке;

--клетка остается жизнеспособной.

 

Патологии митоза

При различных повреждениях митотического аппарата клетки возможны следующие типы патологических изменений (рис. 11):

- многополюсный митоз;

- моноцентрическии митоз;

- асимметричный митоз;

- трехгрупповая метафаза;

- метафаза с полярными хромосомами;

- полая метафаза.

 

Многополюсный митоз связан с аномалией развития центриолей. Как следствие этого образуется несколько полюсов и веретен деления. С нарушениями центриолей связан и моноцентрический митоз. При этом образуется только один полюс с веерообраз­ным веретеном и все хромосомы отходят к одному полюсу.

При асимметричном митозе противоположные центры раз­виваются неравномерно.

В случае трехгрупповой метафазы в клетке наблюдается, кроме обычной экваториальной пластинки, две дополнительные группы хромосом у полюсов; либо у полюсов находятся оди­ночные («полярные») хромосомы. Возникает такая патология в результате отставания некоторых хромосом в метакинезе.

Полая метафаза — малоизученная форма патологии митоза. Представляет собой широкое кольцо хромосом, расположенное на периферии клетки.

 

 

Рис. 11. Патологии митоза: а - многополюсный; б - асимметричный; в - моноцентрический; г - трехгрупповая метафаза; д - полая метафаза

 

Эволюция митоза

Главным типом деления ядер простейших, как и ядер много­клеточных, является митоз. Это положение впервые было четко обосновано Белларом, остается в силе и поныне. Основная отличительная черта митоза - закономерное расхождение в дочерние ядра двух копий редуплицированных хромосом (двух ее хроматид). В результате дочерние ядра получают одинаковые полные набо­ры хромосом. В ходе эволюции было несколько типов митозов, которые имели свои отличительные особенности (рис. 12).

Рис. 12. Схемы различных эволюционных типов митоза: а — открытый; б — полузакрытый; в — закрытый внутриядерный; г — открытый внутриядерный

 

Открытый митоз — митоз с распадом ядерной оболочки, термин предложен Дженкинсом.

Ядерная оболочка разрушается.

Ядрышки исчезают.

Веретено деления биполярное.

Центрорганизующее веретено находится в цитоплазме.

 

Полузакрытый митоз — митоз с распадом ядерной оболоч­ки только на полюсах веретена, с образованием «полярных окон».

Ядерная оболочка вокруг веретена сохраняется, за исключением полярных зон, где в оболочке образуются крупные окна или бреши.

Ядрышко растворяется.

Закрытый внутриядерный митоз — митоз без распада ядер­ной оболочки.

Ядерная оболочка сохраняется.

Наблюдается с


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.245 с.