Защита от теплового излучения — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Защита от теплового излучения

2017-10-16 1207
Защита от теплового излучения 0.00 из 5.00 0 оценок
Заказать работу

Цель работы – практическое ознакомление с теорией теплового (инфракрасного) излучения, физической сущностью и инженерным расчетом теплоизоляции

 

Тепловым излучением называется процесс, при котором лучистая энергия распространяется в форме инфракрасных лучей с длиной волны до 10 мм. Источниками тепловых излучений являются все нагретые тела.

В условиях производства источниками тепловых излучений могут быть наружные стенки котлов, горячих теплопроводов, машин, проводников электросетей, электрических машин и аппаратов, нагревательных приборов и др. Источниками инфракрасных лучей являются расплавленные и раскаленные металлы и другие вещества.

Выделение тепла в воздух помещения оценивают количеством его (ккал/ч, Дж/ч) на 1 м3 строительного объема здания.

Лучистая тепловая энергия воздухом почти не поглощается, а передается от более нагретых тел к поверхности менее нагретых, повышая их температуру. Сам же воздух нагревается от нагретых тел путем конвекции.

Нормальной температурой воздуха в производственном помещении считается температура порядка 20 °С. При этой температуре в организме человека наилучшим образом осуществляется терморегуляция, т.е. поддержание постоянной температуры тела на уровне около 37 °С.

При значительном перегреве организма возникает опасное заболевание, характеризуемое нарушение работы сердечнососудистой системы. Такое внезапное заболевание, называется также тепловым ударом, в тяжелых случаях может быть смертельным. Поэтому санитарными нормами проектирования регламентированы параметры благоприятного микроклимата в производственных помещения. Так, например, комфортным условиям для организма человека при неподвижном воздухе соответствует температура 25° С при влажности 60 %.

В зависимости от наличия в помещении источников тепла и опасности перегрева для поддержания нормального микроклимата применяется вентиляция или более совершенное средство - кондиционирование воздуха. Следует отметить, что вентиляция и кондиционирование воздуха не защищают организм от тепловых лучей, которые проходят через воздух почти беспрепятственно. Защита от лучистого тепла может осуществляться путем устранения источников тепловых лучей и при помощи защиты людей от их действия экранами из малотеплопроводных материалов (асбест, шифер). Индивидуальная защита осуществляется применением

спецодежды и защитных средств (брезентовые или суконные костюмы, очки со светофильтрами, щитки из органического стекла и др.).

В горячих цехах важную роль играет снабжение рабочих питьевой подсоленной или газированной водой, что улучшает водный баланс организма.

К числу мероприятий, способных ослабить вредное действие теплового излучения, относятся:

а) механизация работ, направленная на то, чтобы работники меньше подвергались тепловому облучению;

б) устройство у тепловыделяющих производственных источников цепных или водяных завес;

в) применение экранов из материалов, обладающих малой теплопроводностью;

г) осуществление аэрации горячих цехов;

д) устройство специальных комнат отдыха, а также душей, снабжение работников подсоленной газированной водой (3 г соли на 1 л воды);

е) применение такой организации труда, которая допускает чередование лиц, работающих в сильно облучаемых местах;

ж) обязательное применение специальных очков для защиты от инфракрасного излучения и особых стекол для предотвращения воздействия ультрафиолетовых лучей.

Теплозащитные экраны (рис. 15) применяют для локализации источников лучистой теплоты, уменьшения облученности на рабочих местах и снижения температуры поверхностей, окружающих рабочее место. Ослабление теплового потока за экраном обусловлено его поглотительной и отражательной способностью. Кратность ослабления теплового потока т при установке п экранов со степенью черноты εэ и пренебрежимо малыми термическими сопротивлениями

определяется по формуле

где Е1 и Е2 - интенсивность теплового облучения на рабочем месте соответственно.

Эффективность установки теплозащитного экрана оценивается долей задержанной теплоты и определяется по формуле

Различают теплоотражающие, теплопоглощающие и теплоотводящие экраны.

В свою очередь по степени прозрачности они делятся на три класса: непрозрачные, полупрозрачные и прозрачные. К первому классу относят металлические водоохлаждающие и футерованные асбестовые, альфолиевые, алюминиевые экраны. Ко второму — экраны из металлической сетки, цепные завесы, экраны из стекла, армированного металлической сеткой. Экраны первого и второго классов могут орошаться водяной пленкой. К третьему классу относят экраны из различных стекол: силикатного, кварцевого и органического, бесцветного, окрашенного и металлизированного, пленочные водяные завесы, свободные и стекающие по стеклу, вододисперсные завесы.


в)

Рис. 7. Конструктивные схемы непрозрачных теплозащитных экранов: а - экран из альфоля, уложенного рядами в воздушных прослойках; б - экран из скомканного альфоля в воздушных прослойках; в - комбинированный экран; 1 - металлический лист; 2 - слой альфоля; 3 -слой из теплоизоляционного металла; 4 - профилированный алюминиевый лист; 5-рамка.

Непрозрачные экраны. В качестве материалов для непрозрачных теплоотражающих экранов используют альфоль (алюминиевую фольгу), алюминий листовой, белую жесть, алюминиевую краску. Экран состоит из несущего каркаса, отражающей поверхности и деталей крепления к экранируемому оборудованию. Межэкранное пространство при установке нескольких простых одинарных экранов принимается обычно (по конструктивным соображениям) равным 20...25 мм. Уменьшение межэкранного пространства до 5 мм улучшает теплозащитные свойства экранов вследствие устранения конвективного теплообмена между слоями экрана.

Теплоотражающие экраны для трубопроводов изготовляются в виде квадратных коробов или полуцилиндрических скорлуп, оклеенных внутри альфолем. При температуре трубопровода выше 90 °С нужен двойной экран. Достоинством теплоотражающих экранов является высокая эффективность, малая масса, экономичность. Однако применение их ограничивается, так как они не выдерживают высоких температур и механических воздействий. Эффективность экранов ухудшается при отложении на них пыли, сажи и при окислении.

В качестве непрозрачных теплопоглощающих экранов используют металлические заслонки и щиты, футерованные огнеупорным или теплоизоляционным кирпичом, асбестовые щиты на металлической раме, сетке или листе и другие конструкции.

Непрозрачные экраны радиационного охлаждения - это сварные или литые (с замкнутым змеевиком) конструкции, охлаждаемые протекающей внутри водой. Их можно футеровать с одной стороны. Временные экраны можно изготовлять в виде металлических щитов, орошаемых водой. Футерованные теплоотводящие экраны могут применяться при любых встречающихся в практике интенсивностях облучения, нефутерованные - при интенсивностях 5... 14 кВт/м2, орошаемые щиты- при интенсивностях 0,7...3,5 кВт/м2.

Полупрозрачные экраны. Их применяют в тех случаях, когда экран не должен препятствовать наблюдению или вводу через него инструмента, материалов. В качестве полупрозрачных теплопоглощающих экранов используют металлические сетки с размером ячейки 3...3,5 мкм, цепные завесы, армированное стальной сеткой стекло. Металлические сетки применяют при интенсивностях облучения до 0,35... 1,05 кВт/м2. Эффективность экранов из сетки зависит от количества слоев: один слой - 33...50, два слоя -

57... 74%.

Цепные завесы применяют при интенсивностях облучения 0,7...5 кВт/м2. Эффективность цепной завесы равна около 70 %. Для повышения эффективности можно применять орошение завесы водяной пленкой и устраивать двойные экраны.

Армированное стальной сеткой стекло применяют для экранирования тех поверхностей кабин и пультов управления, которые должны пропускать видимый свет, но четкого различения объектов через них не требуется. Допустимая интенсивность облучения и эффективность экранов из армированного стекла такая же, как и у цепной завесы. Эффективность экрана может быть повышена орошением водяной пленкой и устройством двойного экрана.

Полупрозрачные теплоотводящие экраны выполняют в виде металлических сеток, орошаемых водяной пленкой, или паровой завесы. Эти экраны имеют коэффициент эффективности до 75 % и применяют при интенсивностях облучения 0,7... 2,1

кВт/м2.Теплопоглощающие прозрачные экраны изготовляют из различ­ных бесцветных или окрашенных стекол (силикатных, кварцевых, органических). Для повышения эффективности применяют двойное остекление с вентилируемой воздушной прослойкой.

Стекла всех теплозащитных экранов обладают спектральной селективностью, и поэтому их эффективность в большой степени зависит от спектрального состава излучения. При длине волны излучения более 5 мкм для защиты может быть использовано обычное оконное стекло толщиной 1 мкм. При длине 2,8...5 мкм требуется бесцветное стекло толщиной 5 мм. При длине волны в диапазоне 0,78...2,8 мкм требуется применять теплозащитное стекло толщиной

5....6 мм.

Эффективность теплозащиты стекол зависит от температуры источника излучения теплоты. Наибольшую эффективность при температуре до 1100°С имеет органическое стекло толщиной 6...8 мм. Выше этой температуры □ закаленное стекло, окрашенное в массе, со светопропусканием 40%. Если тепловой поток действует на стекло постоянно, то эффективность теплозащиты снижается в среднем на 10 % по сравнению с периодически действующим потоком.

Выбор стекла для смотровых окон постов правления должен производиться с учетом значений интенсивности облучения и температуры источника излучения.

Прозрачные теплоотводящие экраны (водяные и вододисперсные завесы) применяют для экранирования рабочих окон печей и т. п., если через экран необходимо вводить инструмент или заготовки. Водяные завесы рекомендуется применять при интенсивности облучения 0,350... 1,400 кВт/м2. Коэффициент эффективности водяных завес в различных участках спектра в значительной степени зависит от толщины слоя и достигает 80 %.

Тонкие водяные пленки (толщиной до 15 мм) хорошо поглощают тепловые лучи с длиной волны более 1,9 мкм, а лучше - с длиной волны более 3,2 мкм. Поэтому они пригодны для экранирования источников с температурой до 800 °С. При толщине слоя воды 15... 20 мм полностью поглощаются тепловые лучи с длиной волны более 1 мкм. При таком слое вода эффективно защищает от теплового

излучения источников с температурой до 1800 °С. Экраны в виде водяной пленки, стекающей по стеклу, более устойчивы сравнению со свободными водяными завесами. Они имеют коэффициент эффективности порядка 90 % и могут применяться при интенсивности облучения до 1,75 кВт/м2.

Аквариумные экраны, представляющие собой коробку из двух стекол, заполненную проточной чистой водой с толщиной слоя 15...20 мм, имеют коэффициент эффективности до 93 % и рекомендуются при интенсивности облучения до 2,0 кВт/мг.

Коэффициент эффективности вододисперсных завес постоянен в диапазоне длин 1... 3 мкм и достигает 0,7. Рекомендуемая область применения завес при интенсивности облучения до 3,5...7 кВт/м2.

 

Контрольные вопросы

1. Укажите основные мероприятия по защите от вредного действия теплового излучения.

2. Индивидуальные средства защиты от теплового излучения.

3. По каким признакам классифицируют теплозащитные экраны?

4. Теплозащитные экраны: область применения, преимущества и недостатки.

5. Конструкции непрозрачных теплозащитных экранов.

6. Эффективность теплозащитных экранов. Сформулируйте пути повышения эффективности их защиты.

7. Водяные и вододисперсные завесы: область применения, преимущества и недостатки.

 

6.ТЕХНИЧЕСКИЕ СРЕДСТВА ЗАЩИТЫ

Для снижения и предупреждения травматизма на производстве применяют современные средства обеспечения безопасности (рис16). Несмотря на их непрерывное совершенствование, полностью устранить опасности из производственного процесса и исключить их влияние на работающих не удается, так как нулевой риск возможен лишь в системах, лишенных запасенной энергии, а также химических или биологических активных компонентов.

Средства управления включают в себя все системы, задействованные в управлении рабочими органами машин и оборудования (пускатели, кнопки, рычаги, тормозные системы, рулевое управление и т. д.).

Информативные средства служат для обеспечения операторов всей необходимой для работы информацией. К таким средствам относят соединенные с преобразователями (датчиками) индикаторы, табло, средства сигнализации (звуковой сигнал, стоп-сигнал, указатели поворота и т. п.), зеркала заднего вида, стеклоочистители, омыватели стекол и т. п.

Рис. 8. Классификация технических средств безопасности и защиты работающих

 

Средства регулирования микроклимата (кондиционеры, отопители, вентиляторы, пылеотделители, аспирационное оборудование и др.) поддерживают требуемые параметры воздушной среды рабочей зоны оператора.

Дополнительные средства используют при техническом обслуживании или ремонте машин и ликвидации отклонений от нормального протекания технологического процесса. К таким средствам относят приспособления для настройки предохранительных муфт, очистки рабочих органов (крючки, чистики), огнетушители, лопаты и т. п.

Ограждения (кожух, капот, решетки, сетки, крышки, перила, барьеры, экраны, жалюзи, козырьки и т. д.) защищают оператора от механических воздействий движущихся и вращающихся частей, высоких или низких температур, повышенных уровней излучений, агрессивного действия химических веществ, биологических вредностей и излишней информации. По способу установки и особенностям эксплуатации ограждения подразделяют на съемные, открываемые и раздвижные; по времени эксплуатации — на постоянные, служащие неотъемлемыми частями машин или оборудования, и временные, устанавливаемые на период выполнения работ небольшой продолжительности на непостоянных рабочих местах.

С помощью блокировок можно предотвратить включение рабочих органов при снятом ограждении, самопроизвольное включение рабочих органов и др. Ограничители энергии служат для предотвращения появления в технических системах излишнего количества энергии, влекущего за собой развитие нестационарных режимов и экстремальных ситуаций. К ограничителям энергии жидкости и газов относят клапаны (предохранительные, взрывные, перепускные), мембраны, шайбы; механической энергии

предохранительные муфты, срезные шпонки, штифты и шпильки, регуляторы частоты вращения, концевые выключатели, ловители; электрической энергии — предохранители, защитно-отключающие устройства, плавкие вставки, заземляющие устройства, устройства защитного зануления и т. п.

Защитные устройства должны удовлетворять следующим требованиям: быть достаточно прочными, простыми в изготовлении и применении; исключать возможность травмирования; надежно фиксироваться в требуемом положении; не мешать при работе, техническом обслуживании или ремонте машин и механизмов.

Конструкция защитного устройства должна быть такой, чтобы при отказе его отдельных элементов действие других не прекращалось раньше завершения действия опасного производственного фактора. Средства защиты не должны снижать производительности труда и качества обработки, ухудшать условия наблюдения при выполнении трудовых операций.

Ограждают все потенциально опасные вращающиеся или движу щиеся части машин, механизмов и оборудования (кроме тех, которые нельзя оградить с учетом их функционального назначения); зоны возможного выброса рабочего материала и инструмента; зоны факторов повышенной опасности (высоких температур, напряжений, излучений).

Защитные ограждения, приспособления и устройства должны исключать:

• возможность соприкосновения работника с движу щимися частями машины;

• выпадение или вылет обрабатываемых деталей (материалов), а также частей рабочих органов при их поломках;

• попадание в работающих частичек обрабатываемого материала;

• возможность травмирования при установке и смене рабочих органов, инструментов.

Внутренние поверхности защитных ограждений и посадочные места для них окрашивают в красный цвет, сигнализирующий об опасности в случае их открывания, а на наружной поверхности наносят предупреждающий знак. Для удержания ограждений при съеме и установке их снабжают рукоятками, скобами и другими устройствами, не допускающими самопроизвольного открывания во время работы. Ограждения должны отвечать эстетическим требованиям, быть компактными, пропорциональными, без выступающих крепежных деталей и острых углов.

Ограждения особо опасных рабочих органов или открывающиеся дверцы, крышки, щитки в этих ограждениях необходимо снабжать электрическими либо механическими блокирующими устройствами, обеспечивающими останов машин или оборудования при съеме или открывании ограждения. Дверцы или съемные крышки должны иметь приспособления, не допускающие их самопроизвольного открывания или смещения во время работы оборудования.

Ограждение ремней должно быть расположено возможно ближе к ним и быть шире их не менее чем на 50 мм.

Оградительные устройства чаще всего изготавливают в виде сплошных жестких щитов и кожухов из листовой стали толщиной не менее 0,8 мм либо листового алюминия толщиной не менее 2 мм, либо из прочной пластмассы толщиной не менее 4 мм. При необходимости осмотра ограждаемых механизмов или деталей оборудования ограждения снабжают смотровыми окнами из безопасного стекла толщиной не менее 4 мм. С этой же целью, а также для снижения массы конструкции ограждения выполняют с отверстиями. Они могут представлять собой решетки или сетки. Решетчатые и сетчатые ограждения необходимо располагать не ближе 50 мм от движущихся частей. Обычно размер ячеек сетки не превышает 10x10 мм.

Блокировки должны отвечать следующим требованиям:

• исключать возможность выполнения операций при незафиксированном рабочем материале или его неправильном положении (установке);

• не допускать самопроизвольных перемещений рабочих устройств, транспортных средств, механизмов подъема, поворота и других подвижных элементов линий, оборудования;

• не допускать выполнения следующего цикла до окончания предыдущего;

• обеспечивать останов линии при снятии или открывании ограждения и входе человека в зону ограждения;

• обеспечивать невозможность пуска линии при снятых или открытых ограждениях, а также при нахождении человека в зоне ограждения;

• исключать возможность одновременного использования дублированных органов или пультов управления;

• обеспечивать останов при выходе исполнительных устройств оборудования за пределы запрограммированного пространства, отказе оборудования или выходе параметров энергоносителей за допустимые пределы.

Ограждения представляют собой физическую преграду между человеком и опасным или вредным производственным фактором. В зависимости от назначения и условий работы ограждения изготавливают из различных материалов. Они могут одновременно выполнять роль паро-, газо- и пылеприемников, исключать воздействие тепловых и электромагнитных излучений на работающих, а в отдельных случаях снижать шум и т. д. Такие ограждения называют комбинированными. Например, ограждение заточного круга кроме защиты человека от отлетающих частиц (в том числе и частей самого круга при его разрушении) выполняет функцию пылеприемника.

Расчет ограждений

Ограждения помимо ограничительных функций должны гаран­тировать безопасность рабочего и обслуживающего персонала в случае отлета из рабочей зоны разрушенных частей инструмента, сорвавшихся заготовок, деталей, элементов крепления.

При расчете сплошных ограждений из металла по действующей ударной нагрузке определяют толщину стенки ограждения.

Для абразивного круга или вращающейся детали в случае их разрыва на две части ударная нагрузка на ограждения, Н,

где mК - масса круга или детали, кг; vвр - окружная скорость вращения, м/с; - радиус центра тяжести половины абразивного круга или детали, м.

Радиус центра тяжести, м,

 

где R —радиус внешней окружности круга или детали, м;г—радиус центрального отверстия круга или детали, м.

Ударная (центробежная) сила, которой обладает деталь при ос­вобождении зажимного устройства фрезерного станка, а также сила удара разорвавшегося ремня, цепи или части сломанного инструмента, Н,

где m - масса детали или ее части, кг; v - скорость движения детали, части, м/с; r1 - радиус кривизны траектории отрыва детали, части, м.

Толщину стенки ограждения, изготавливаемого из листовой конструкционной стали, принимают по справочным данным.

Сплошные ограждения, толщина стенок которых подсчитана указанным методом, могут быть заменены отдельными кружками или сеткой после соответствующего перерасчета конструкции ограждения в зависимости от характера нагрузки (растяжение, изгиб, срез).


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.06 с.