Автоматическое регулирование — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Автоматическое регулирование

2017-08-24 109
Автоматическое регулирование 0.00 из 5.00 0 оценок
Заказать работу

Ручное управление

Структурная схема ручного управления показана на рисунке.

При таком управлении оператор измеряет текущее значение регулируемой величины Y(t), сравнивает его с заданным значением X0 и в зависимости от рассогласования?(t)=Y(t) - X0 перемещает регулирующий орган РО, меняя управляющее воздействие U(t) на объект управления.

Недостатками ручного управления являются:

оператор не в состоянии непрерывно наблюдать за технологическим процессом, следовательно, возможны опоздания в процессе регулирования и, как следствие, отклонение управляемой величины Y(t) от желаемого значения;

оператор сам определяет как величину, так и закон перестановки регулирующего органа, а значит, возможны ошибки, которые зависят от опытности оператора.

Таким образом, ручное управление сопряжено со значительными ошибками регулирования.

Чтобы ошибки регулирования не привели к браку продукции оператор вынужден поддерживать режимные параметры процесса, как правило, ниже максимально допустимых значений, что приводит к снижению интенсивности протекания процесса и производительности оборудования. В противном случае (например, при перегреве семенного зерна) возможен массовый брак продукции и значительный экономический ущерб.

Автоматическое регулирование

Структурная схема системы автоматического регулирования приведена на рисунке.

Система работает следующим образом. Сигнал с выхода объекта управления ОУ, измеренный измерительным элементом (датчиком) ИЭ, поступает в сравнивающий элемент СЭ, где он сравнивается с желаемым значением X0управляемой величины. Сигнал рассогласования?(t)=Y(t)-X0 поступает в регулятор Р, который в зависимости от значения и знака рассогласования вырабатывает управляющий сигнал U(t), под действием которого ия вещества в объект управления ОУ, тем самым изменяя его управляемую величину Y(t).

Таким образом, при отклонении регулируемой величины от заданного значения в системе автоматически появляется управляющее воздействие устраняющее это отклонение.

Регулятором называют устройство, осуществляющее воздействие на управляемый объект в соответствии с заложенным в нем алгоритмом управления.

Совокупность объекта управления и автоматического регулятора называют системой автоматического регулирования САР.

Важно отметить, что принципы построения систем автоматического управления остаются одинаковыми независимо от природы регулируемой величины и конструктивного исполнения регуляторов.


Измерение технологических параметров. Термины и понятия

Очень важным фактором правильного понимания дисциплины и науки метрология служат использующиеся в ней термины и понятия. Надо сказать, что, их правильная формулировка и толкование имеют первостепенное значение, так как восприятие каждого человека индивидуально и многие, даже общепринятые термины, понятия и определения он трактует по-своему, используя свой жизненный опыт и следуя своим инстинктам, своему жизненному кредо. А для метрологии очень важно толковать термины однозначно для всех, поскольку такой подход дает возможность оптимально и целиком понимать какое-либо жизненное явление. Для этого был создан специальный стандарт на терминологию, утвержденный на государственном уровне. Поскольку Итак, в метро логии используются следующие величины и их определения:

физическая величина - общее свойство в отношении качества большого количества физических объектов, но индивидуальное для каждого в смысле количественного выражения;

единица физической величины - физическая величина, которой по условию присвоено числовое значение, равное единице;

измерение физических величин - количественная и качественная оценка физического объекта с помощью средств измерения;

средство измерения - техническое средство, имеющее нормированные метрологические характеристики. К ним относятся измерительный прибор, мера, измерительная система, измерительный преобразователь, совокупность измерительных систем;

измерительный прибор - средство измерений, вырабатывающее информационный сигнал в такой форме, которая была бы понятна для непосредственного восприятия наблюдателем;

мера - средство измерений, воспроизводящее физическую величину заданного размера. Например, если прибор аттестован как средство измерений, его шкала с оцифрованными отметками является мерой;

измерительная система - система, воспринимаемая как совокупность средств измерений, которые соединяются друг с другом посредством каналов передачи информации для выполнения одной или нескольких функций;

измерительный преобразователь - средство измерений, которое производит информационный измерительный сигнал в форме, удобной для хранения, просмотра и трансляции по каналам связи, но не доступной для непосредственного восприятия;

принцип измерений - совокупность физических явлений, на которых базируются измерения;

метод измерений - совокупность приемов и принципов использования технических средств измерений;

методика измерений - совокупность методов и правил, разработанных метрологическими научно-исследовательскими организациями, утвержденных в законодательном порядке;

погрешность измерений - незначительное (допустимое) различие между истинными значениями физической величины и значениями, полученными в результате измерения;

основная единица измерения - единица измерения, имеющая эталон, который официально утвержден;

производная единица - единица измерения, связанная с основными единицами на основе математических моделей через энергетические соотношения, не имеющая эталона;

эталон - средство измерений, физический объект, который имеет предназначение для хранения и воспроизведения единицы физической величины, для трансляции ее габаритных параметров нижестоящим по поверочной схеме средствам измерения;

первичный эталон - средство измерений, обладающее наивысшей в стране точностью. Есть понятие <эталон сравнений>, трактуемое как средство для связи эталонов межгосударственных служб;

эталон-копия - средство измерений для передачи размеров единиц образцовым средствам;

образцовое средство - средство измерений, предназначенное только для трансляции габаритов единиц рабочим средствам измерений;

рабочее средство - средство измерений для оценки физического явления;

точность измерений - числовое значение физической величины, обратное погрешности, определяет классификацию образцовых средств измерений. По показателю точности измерений средства измерения можно разделить на: наивысшие, высокие, средние, низкие.

Глоссарий метрологии

Физическая величина - одно из свойств физического объекта, общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. Измерение - совокупность операций по применению технического средства, хранящего единицу физической величины, обеспечивающих нахождение соотношения измеряемой величины с ее единицей и получения значения этой величины.

Средство измерений - техническое средство, предназначенное для измерений и имеющее нормированные метрологические характеристики.

Поверка - совокупность операций, выполняемых в целях подтверждения соответствия средств измерения метрологическим требованиям.

Погрешность измерения - отклонение результата измерения от истинного значения измеряемой величины.

Погрешность средства измерения - разность между показанием средства измерений и действительным значением измеряемой физической величины.

Точность средства измерений - характеристика качества средства измерений, отражающая близость его погрешности к нулю.

Датчик – функциональное устройство, кот. преобразует физическую величину одного рода в физическую величину другого рода, удобную для передачи другим элементам и на усиление. Основные характеристики: 1). Статическая характеристика y=f(x) 1-линейная характеристика, поэто- му чувствительность S = y / x =constбу- дет постоянной для всего диапазона х. 2-нелинейная характеристика – чув- ствительность различна в различных точках крутизны данной характери- стики. 1 1 1 2 2 2 1 2 S = y / x,S = y / x,S ¹S Датчики, в кот. статич. хар-ка не- прерывна назыв. датчиками непрер-го действия или функциональными. Если стат-кая хар-ка описывается след. ф- цией y = k × x, где k=const, то такой дат- чик наз-ся линейным. Если стат-кая хар- ка датчика имеет разрывный характер вида y=0 при 0<xa, то датчик наз-ся релейным. 2) Динамическая характеристика – зависимость y от времени при скачкообразном изменении входной величины x. y=f(t) при x=const 1 – экспонинциальный 2 - колебательный затухающий процесс. По виду выходной величины сигнала Y датчики делятся на: омиче- ские (резисторные), емкостные, индуктивные, термоэлектрические, трансформаторные, По виду входной

Пьезоэлектрические датчики

Пьезоэлектрические датчики используют датчик - кристалл. Когда давление прикладывается к кристаллу, он деформируется и создается небольшой электрический заряд. Измерение электрического заряда пропорционально изменению давления. Этот тип датчика имеет очень быстрое время отклика на постоянные изменения давления. Подобно датчику давления основанного на принципе измерения магнетосопротивления, пьезоэлектрический элемент очень чувствителен, но реагирует гораздо быстрее. Таким образом, если время имеет существенное значение, пьезоэлектрический датчик будет приоритетный к использованию. Диапазон давления датчиков такого типа составляет 0,021 - 100 МПа с чувствительностью 0,1 МПа.

Ниже показан пример пьезоэлектрического датчика давления:


Термометры сопротивления

Различают проволочные и полупроводниковые.

а) Проволочные ТС – тонкая проволока d=0.05-0.1 мм лаковой изоляции, наматываемой на каркас круглой, прямоугольной и крестообразной форм из диэлектрич.материалов Принцип действия основан на изменении сопротивления проводников при изменении температуры по зависимости:

Rt=R0(1+αt+βt2)

Rt- сопротивление проводника при t 0C

R0 - сопротивление проводника при t=0C

- зависит от материала датчика

В качестве материала примем Cu или Ptв виде проволоки = (0,01-0,1) мм, покрытый изоляцией и наматываемый на каркас из слюды, кварца и др. диэлектриков.

Медные ТС (ТСМ). Предел изменяемыхt = (0 - 180) 0С

Платиновые t = (0 - 800) 0C

Основная характеристика данных датчиков при изменении t на 10С

= R / t *100

Рабочая длинна l = (70 - 1000)мм

Данные датчика присоединен к вторичным проборам, образуя вторичная цепь. Вторичные приборы: логометры, (измерители сопротивления), а также автоматически уравновешивающие мосты. Датчик включается в одну из плеч мостов системы.

Сопротивление датчика измеряется след.способами:

· датчик включается последовательно сопротивлению нагрузки при const напряжении, питающим цепь

· Д включается в одно из плеч мостовой измерительной схемы, кот.реализуется в автоматических уравновешенных мостах

· Д последовательно включ-ся по входу вторичного прибора

 


Мостовые схемы.

Для устранения погрешности применяют специальные схемы ЭДС данных холодных спаев.

Применяется мостовая схема, имеется 4 плеча, в каждом из которых включены соответствующие сопротивления R1,R2 - -постоянного сопротивления, величины которых не зависят от t. Rt- термосопротивление, не зависящее от t. R3 – потенциометр

Данный мост имеет 2 диагонали: 5-6 – питающая диагональ, включающая источник постоянного тока, 3-4 – измерительную диагональ

Когда мост уравновешен, U измерительная диагональ U=0. Условие равновесия моста определяется следующим соотношением: равенство произведений сопротивлений противоположных плеч

При увеличении температуры холодных спаев. увеличение Rt приводит к разбалансированию моста. В измерительной диагонали возникает U.

Параметры данного моста так, чтобы U, возникающее в измерении диагонали было равно изменению ЭДС холодных спаев и направлено навстречу ему, т.е.

U34= е2

е2- отклонение ЭДС холодных спаев от ЭДС его градуировки

В качестве материалов электродов ТП применяют Pt, ее сплавы, сплавы др. металлов.


Ультразвуковые расходомеры

Действие ультразвуковых расходомеров основано на влиянии скорости среды на характеристики распространяющейся в ней акустической волны. Разделяются на 1) основанные на перемещении в среде акустической волны и 2) на эффекте Доплера. Наибольшее распространение получили расходомеры, измеряющие разность времен прохождения волны по потоку (от излучателя И1 к приемнику П1) и против него (от излучателя И2 к приемнику П2).

Статическая характеристика такого расходомера имеет вид:

где с – скорость звука в измеряемой среде.

Преимущества время-импульсных расходомеров:

· высокая точность,

· возможность измерения расхода как жидкостей, так и газов,

· широкий диапазон измерений (1:500),

· низкая стоимость, малые габариты и масса при больших диаметрах трубопроводов (400 – 1500 мм.).

· возможность измерения расхода без врезки в трубопровод.

Недостатки:

· зависимость показаний от профиля скорости потока и скорости звука,

· зависимость показаний от наличия в потоке частиц.

Для уменьшения влияния профиля потока применяют преобразователи, у которых волна распространяется поперек трубы по хорде на расстоянии 0,5R от ее центра или вдоль оси трубопровода. Существует большое разнообразие конструкций преобразователей расхода.

Доплеровские расходомеры лучше работают при наличии в потоке частиц.


Кориолисовы расходомеры

Принцип действия основан на использовании кориолисового ускорения, возникающего в инерционной системе, перемещающейся по радиусу относительно неподвижного наблюдателя.

Под действием внешних колебаний в потоке среды будет возникать ускорение кориолиса, которое приведёт к деформации трубки и изменению времени прохождения левой и правой частей трубки относительно неподвижного наблюдателя. Величина кориолисовой силы, деформирующей трубку, опр-ся по формуле:

Fк = 2G ∙ ω

G – массовый расход вещества через расходомер

ω – частота внешних принудительных колебаний

Достоинства: отсутствие больших гидравлич. сопротивл.; точность

Недостатки: сложность и большие размеры расходомера; дрейф??????


30. Измерение расхода 2хфазных потоков.

Измерение расхода двухфазных потоков. Особенности измерения расхода двухфазных потоков обусловлены тем, что на их характеристики существенное влияние оказывает структура потока, зависящая в свою очередь от доли дисперсной фазы. Кроме того, дисперсная фаза часто имеет плотность, существенно отличающуюся от плотности дисперсионной среды, фазы движутся с некоторой скоростью друг относительно друга, поэтому неприемлемы соотношения, применимые для однофазных потоков.

Для измерения расхода используют специальные диафрагмы, массовые расходомеры, объемные счетчики, а также системы, состоящие из нескольких разнотипных расходомеров, которые по разному восприимчивы к влиянию дисперсной фазы. По разнице показаний можно определить общий расход, а также долю дисперсной фазы.

 


Поплавковый плотномер.

1 – измерительная ёмкость

2 – поплавок

3 – устройство для перелива

4 – стержень, соединяющий поплавок с дифференциально – трансформаторным преобразователем

5 – дифференциально-трансформаторный преобразователь

Класс точности 0,5-2,5

Принцип действия основан на определении выталкивающей силы:

N = (V + L ∙ S) ∙ p ∙ g (1)

 

Сила тяжести, действующая на поплавок:

Gn = m ∙ g(2)

Приравнивая 1 и 2:

L - длина стержня, погружённого в жидкость

S площадь поперечного сечения


Измерение влажности газов

Влажность – показатель содержания воды в физических телах.

Вода входит в состав большинства неметаллических материалов. Оказывая существенное влияние на физико-химические и физико-механические свойства веществ, содержание влаги является одним из важнейших показателей качества продукции.

Измерение влажности газов.

В воздухе (газах) свободная вода может находиться в виде водяного пара (бесцветный прозрачный газ без запаха), тумана (жидкая фаза) или твердой фазы (кристаллы льда). Количество содержащейся в воздухе влаги характеризуется двумя величинами – относительной и абсолютной влажностью. Абсолютная влажность показывает количество водяного пара, содержащегося в единице объема воздуха [г/м 3 ]. Несмотря на свою наглядность, абсолютная влажность не дает представления о том, насколько влажен воздух. Насыщение газа парами воды не может быть сколь угодно большим, т.к. этому препятствует состояние насыщения – установление динамического равновесия между испаряющимися и конденсирующимися молекулами воды.

Количество водяного пара, который может содержаться в воздухе, зависит от температуры – чем выше температура, тем больше влаги может в нем находится. Поэтому для определения "сухости" воздуха, от которой зависит интенсивность испарения влаги с кожи человека, из деревянной мебели и т.п., используется относительная влажность – отношение парциального давления паров воды в воздухе к равновесному давлению насыщенных паров при данной температуре. (Эквивалентное определение – отношение массовой доли водяного пара в воздухе к максимально возможной).

Иногда влажность выражается температурой точки росы – температурой газа, при которой газ насыщается водяным паром при данном количестве воды.

СИ влажности называются влагомерами или гигрометрами и классифицируются в зависимости от используемого метода измерений.

Психрометрический гигрометр (психрометр). Принцип действия основан на зависимости от влажности разности температур сухого и увлажненного термометров. Испарение влаги с поверхности термометра сопровождается понижением его температуры. При этом степень понижения зависит от интенсивности испарения и, в конечном счете, от «сухости» окружающего воздуха:

 

 

где Р м и Р с – давление насыщенных паров при температурах мокрого и сухого термометров, А φ – психрометрический коэффициент, Р – барометрическое давление, Т м и Т с – температуры мокрого и сухого термометров.

Преимущества – простота конструкции, достаточная точность, малая инерционность.

Недостатки – увеличение погрешности при понижении температуры воздуха, возможность применения при температурах выше 0 °С, зависимость показаний от скорости обдува мокрого термометра. С увеличением скорости увеличивается интенсивность испарения, но при V > 3м/с, остается практически постоянной. Поэтому часто предусматривают принудительный обдув.

Емкостные гигрометры. Действие основано на изменении диэлектрической проницаемости газа, находящегося между обкладками конденсатора, при изменении содержания в нем воды. Чувствительный элемент представляет собой диэлектрическую влагонепроницаемую подложку, на которую напыляются обкладки конденсатора.

Преимущества – малые габариты (2х3 мм) и инерционность, широкий диапазон изменения рабочих температур.

Недостатки – сложная схема прибора, малое значение емкости (несколько пФ), зависимость диэлектрической проницаемости воды от температуры. Для компенсации влияния по периметру ЧЭ напыляется платиновый термометр сопротивлений R x (Т).

Волосяные гигрометры. Принцип действия основан на зависимости длины волоса от влажности: при изменении относительной влажности воздуха от 40 до 90% волос удлиняется на 2,5%. Погрешность – 5%. Быстродействие составляет несколько минут и зависит от влажности и температуры. Диапазон рабочих температур от минус 10 до +50 °С.

Гигрометры точки росы. Принцип действия основан на измерении температуры, при которой начинается конденсация влаги. Состоит из металлического зеркала, которое охлаждается элементом Пельтье, источника и приемника света, Управляемого Источника Питания, термопары и потенциометра.

При охлаждении зеркала наступает момент, когда на нем начинает конденсироваться влага из воздуха. Образующиеся на зеркале капли воды увеличивают рассеивание светового потока и, следовательно, уменьшают его часть, попадающую на фотоприемник. Это, в свою очередь, приводит к уменьшению напряжения питания холодильника и увеличению температуры зеркала до тех пор, пока вода не испарится. Таким образом, температура зеркала стабилизируется около точки росы, которая измеряется потенциометром. Значение влажности индицируется в градусах.

 

 


Датчики вязкости.

Вязкость (внутреннее трение) – свойство текучих тел (жидкостей и газов) оказывать сопротивление перемещению одной их части относительно другой. Основной закон вязкого течения описывается формулой Ньютона:

где F – тангенциальная (касательная) сила, вызывающая сдвиг слоев жидкости (газа) друг относительно друга; S – площадь слоя, по которому происходит сдвиг; dv/dn – градиент скорости v течения (быстроты изменения ее от слоя к слою) по нормали п. Коэффициент пропорциональности η называют динамической вязкостью.

Наряду с понятием динамической вязкости используют понятие кинематической вязкости:

ν = η / ρ.

Единица динамической вязкости с СИ – [Па·с], в системе СГС – [П] (пуаз); единица кинематической вязкости в СИ – [м2 /с], в системе СГС – [ст] (стокс).

Вязкость жидкостей с увеличением температуры уменьшается, а газов – увеличивается. Динамическая вязкость до давлений 20 МПа практически не зависит от давления. Если вязкость жидкости не зависит от скорости сдвига, то такие жидкости называют ньютоновскими. В противном случае – неньтоновскими.

Средства измерений вязкости называют вискозиметрами, которые классифицируют по используемому принципу измерений. Капиллярные вискозиметры (вискозиметры истечения). Принцип действия основан на законе ламинарного течения жидкости через капилляр (закон Пуазейля):

где Q – объемный расход жидкости; d и l – внутренний диаметр и длина капилляра; р 1, р 2 – давления до и после капилляра по потоку.Следовательно, для измерения динамической вязкости достаточно при постоянном объемном расходе жидкости измерять перепад давлений на капилляре.На рис. показана схема капиллярного вискозиметра, в котором для создания постоянного объемного расхода анализируемой жидкости используется шестеренчатый насос 1, приводимый в движение синхронным двигателем 2.

Из насоса анализируемая жидкость поступает в змеевик 3, где нагревается до температуры масла, заполняющего термостат 6, а затем – в капилляр 4, размеры которого выбирают в зависимости от диапазона измеряемых значений вязкости. Перепад давлений на капилляре, который пропорционален динамической вязкости анализируемой жидкости, измеряется дифманометром 5. Температура в термостате поддерживается постоянной в диапазоне от 50 до 100°С.

Диапазоны измерений от (0–2) 10-3 Па·с до (0-1000) 10-3 Па·с. Классы точности вискозиметра 1,5 – 2,5 (в зависимости от диапазона измерений).

Вискозиметры с падающим телом (шариковые вискозиметры). Принцип действия основан на измерении скорости (или времени) равномерного движения тела (шарика) под действием сил тяжести и трения в анализируемой жидкости:

где v – скорость равномерного падения шарика; ρ ш – плотность материала шарика, r – радиус шарика.

Обычно измерение скорости сводится к измерению отрезка времени η, за который шарик, падая с постоянной скоростью, проходит некоторый постоянный отрезок пути между двумя принятыми отметками.

На рис. показана схема шарикового вискозиметра циклического действия.

Анализируемая жидкость из аппарата 7 или трубопровода прокачивается насосом 6 по трубке 1 из немагнитного материала снизу вверх и при своем движении поднимает шарик 4 от нижней 11 до верхней 5 ограничительной сетки. При выключении двигателя 8 насоса (периодическое включение и выключение осуществляются блоком управления 9) шарик падает вниз под действием силы тяжести. С помощью дифференциальных трансформаторов 3 и 2 формируются электрические импульсы в моменты времени, когда шарик проходит две выбранные отметки, отстоящие друг от друга по высоте трубки на расстояние l. Вторичный прибор 10 измеряется отрезок времени между указанными импульсами, значение которого и определяет динамическую вязкость. Класс точности вискозиметра 2%. Ротационные вискозиметры. Принцип действия основан на зависимости крутящего момента или скорости вращения ротора (цилиндра, диска и т. п.) погруженного в измеряемую среду от вязкости. В общем случае момент описывается выражением:

где k – постоянный коэффициент, зависящий от конструкции ротора вискозиметра; ω – угловая скорость вращения ротора.

Вискозиметры бывают с постоянной скоростью и постоянным моментом.

В автоматических анализаторах в качестве роторов обычно используются шар, диск, цилиндр. Особенностью ротационных вискозиметров является широкий диапазон измеряемых значений вязкости (0,01 – 1000 Па·с). Классы точности ротационных вискозиметров 1 – 2,5%.

 


Газоанализаторы.

Чаще всего сырье или готовый продукт представляет собой смесь, которая состоит из двух и более составных частей, называемых компонентами.

Различают качественный и количественный состав смеси. Первый представляет собой информацию о том, какие компоненты входят в смесь, второй, кроме того, дает информацию о количестве этих компонентов в смеси. Количественный состав характеризуется концентрацией.

Бинарная смесь – смесь, состоящая из двух компонентов.

Многокомпонентная смесь – смесь, состоящая из трех и более компонентов.

Псевдобинарная смесь – многокомпонентная смесь, которая при определенных условиях по некоторому физико-химическому свойству может рассматриваться как бинарная.

Измерение концентрации определяемого компонента в бинарных и псевдобинарных смесях жидкостей и газов – одна из наиболее распространенных задач автоматического контроля качества потоков химико-технологических процессов. В общем случае измерение концентрации определяемого компонента в бинарной смеси осуществляется путем измерения какого-либо физико-химического свойства этой смеси.

Термокондуктометрические газоанализаторы. Принцип действия основан на процессе теплопереноса в газах под действием градиента температур.

Для большинства газов теплопроводность возрастает с увеличением температуры. Для многих газов и паров жидкостей тепловое сопротивление (величина обратная теплопроводности) смеси связана с теплопроводностью компонентов соотношением:

где 1/ λ – тепловое сопротивление анализируемой газовой смеси; 1/ λ i – тепловое сопротивление i -гo компонента смеси; c i – объемная концентрация i -го компонента.

Основной частью термокондуктометрического газоанализатора является детектор, представляющий собой металлический блок 1, в котором расположены четыре камеры 2, 6, 7, 8. В каждой из камер в держателях 4, укрепленных в электроизоляционной обойме 5, размещены металлические или полупроводниковые терморезисторы 3. Металлические терморезисторы выполнены из платиновой, вольфрамовой или вольфрам-рениевой проволоки диаметром 0,02 – 0,05 мм.

Анализируемый и вспомогательный газы поступают из блока подготовки газов 9 с постоянными объемными расходами соответственно в соединенные последовательно камеры 2, 6 и 8, 7. Размещенные в этих камерах измерительные Rи и сравнительные Rср терморезисторы образуют неравновесный мост. Напряжение питания подбирают таким, чтобы терморезисторы были нагреты до температуры 50 - 200°С. Резистор Rо служит для настройки начального уровня сигнала моста, резистор Rд – для настройки коэффициента передачи.

Если теплопроводности анализируемого и сравнительного газов одинаковы, то температуры, а, следовательно, и сопротивления резисторов одинаковы, и ток в измерительной диагонали моста отсутствует (при необходимости устанавливается с помощью резистора Rо) При изменении теплопроводности смеси условие теплопередачи в камерах 2 и 6 изменяется, а в камерах 7 и 8 остается прежним. Это вызывает изменение сопротивлений терморезисторов Rи.

В результате чего на измерительной диагонали моста возникает разбаланс, который описывается выражением:

 

ΔU = K λ (1/ λ см – 1/ λ в),

 

где K λ – коэффициент преобразования термокондуктометрического газоанализатора; 1/ λ см, 1/ λ в – тепловые сопротивления анализируемой смеси и вспомогательного газа соответственно.

Термокондуктометрические газоанализаторы применяются для измерения концентрации Н 2, Не, С0 2, С0, NH 3, С1 2 в бинарных и псевдобинарных газовых смесях, т.к. у этих газов теплопроводность во много раз больше теплопроводности воздуха.

Диапазон измерений от 0 – 1 до 0 – 100%, классы точности 2,5 – 10 (увеличивается с уменьшением диапазона измерений); время реакции 60–120 с.

 


Анализаторы жидкостей.

Принцип действия кондуктометрических анализаторов основан на зависимости электропроводности растворов электролитов от концентрации растворенных веществ. В этих растворах часть молекул диссоциирует на положительные и отрицательные ионы, которые соответственно называют катионами и анионами, что придает растворам способность проводить электрический ток. Если жидкость является частью электрической цепи, то она ведет себя как электрическое сопротивление, проводимость k которого определяется выражением:

где χ – удельная проводимость (электропроводность); S и l – площадь сечения проводника и его длина.

Чувствительные элементы кондуктометров называются электролитическими измерительными ячейками. По конструкции различают контактные и бесконтактные измерительные ячейки. В контактных измерительных ячейках в анализируемом растворе размещаются электроды, т. е, имеет место гальванический контакт с ним. В бесконтактных измерительных ячейках этот контакт отсутствует, а используется электромагнитное взаимодействие с анализируемым раствором.

По числу электродов в контактной измерительной ячейке различают двух-, трех- и четырехэлектродные ячейки.

 

 

Простейшей является двухэлектродная ячейка, которая представляет собой камеру с двумя инертными металлическими электродами, заполненную анализируемой жидкостью. Электрическое сопротивление измерительной ячейки определяется выражением

 

 

где К – константа измерительной ячейки, зависящая от площади поверхности электродов, расстояния между ними и их конфигурации, определяемая опытным путем.

Для уменьшения влияния внешних электромагнитных наводок на результат измерения применяют трехэлектродные ячейки, в которых средний электрод размещен между двумя внешними.

Для уменьшения погрешности, связанной с поляризацией электродов, применяют четырехэлектродные измерительные ячейки, в которых функции подвода электрической энергии к ячейке и съема сигнала измерительной информации разделены. В четырехэлектродной ячейке 1 к токовым электродам 2 и 5 подводится стабилизированное напряжение U от источника переменного или постоянного тока и между ними в анализируемой жидкости проходит ток. Электроды 3 и 4 служат зондами для измерения падения напряжения Ux, которое создается током на участке между этими электродами. При измерении указанного падения напряжения компенсационным методом ток в цепи электродов 3 и 4 практически не проходит и они не поляризуются.

Бесконтактные измерительные ячейки применяются при анализе жидких сред, содержащих взвеси, коллоиды, пленкообразующие и кристаллизующиеся компоненты.

 

 

Анализируемая жидкость поступает в трубку 3 из диэлектрика, на которую снаружи намотаны обмотки двух трансформаторов – возбуждающего Tp1 и измерительного Тр2. Обмотка 1 трансформатора Tp1 подключена к источнику переменного тока. Раствор анализируемого вещества в трубке 3 образует замкнутый жидкостной виток и является вторичной обмоткой трансформатора Tp1. Под действием ЭДС, наводимой первичной обмоткой 1 в замкнутом витке, в нем проходит ток. Сила этого тока пропорциональна электропроводности анализируемой жидкости. Для измерительного трансформатора Тр2 жидкостный виток служит первичной обмоткой.

ЭДС, наводимая в его вторичной обмотке 2, зависит от силы тока, проходящего по жидкостному витку, т.е. определяется электропроводностью анализируемой жидкости.

В практике автоматического аналитического контроля наиболее широкое применение имеют кондуктометры с контактными измерительными ячейками. Для измерения сопротивления электролитических измерительных ячеек применяются разные по схемам уравновешенные и неуравновешенные мосты переменного тока.

Кондуктометрические анализаторы используются для автоматического контроля концентрации растворов солей, кислот, щелочей и других сред. В зависимости от схемы и конструкции класс точности промышленных кондуктометров составляет 1 – 5%. Диапазон измерений по электропро­водности от 1•10 -8 до 1 См/см.

Потенц


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.147 с.