Перегонка виноматериалов на коньячный спирт — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Перегонка виноматериалов на коньячный спирт

2017-07-25 3749
Перегонка виноматериалов на коньячный спирт 5.00 из 5.00 4 оценки
Заказать работу

Перегонка коньячных виноматериалов – дистилляционный процесс, при котором вино нагревается до кипения и образующийся пар конденсируется в холодильнике. В результате получается дистиллят – коньячный спирт, содержащий этиловый спирт и летучие вещества, количество которых превышает содержание их в вине. Правильная перегонка виноматериалов состоит в том, чтобы избежать, во-первых, появления посторонних (дефектных) тонов (уваренных, горелых и др.), во-вторых, - извлечь из виноматериалов букетистые вещества и достаточное количество сопутствующих соединений типа бутандиола, добиться гармоничного, приятного равновесия.

Качество коньячного спирта зависит, в первую очередь, от качества используемого виноматериала и умения спиртокура. Молодой коньячный спирт должен быть приготовлен согласно технологической инструкции по дистилляции коньячных виноматериалов с соблюдением санитарных норм и правил. По органолептическим показателям он должен отвечать следующим требованиям: цвет – от бесцветного до светло-соломенного; прозрачность – прозрачный без посторонних включений и осадка; аромат – сложный, с выраженными винными и лёгкими цветочными тонами; вкус – чистый, жгучий с лёгким привкусом этилового спирта. По химическим показателям, согласно ГОСТ Р 51145-98, необходимо, чтобы: объёмная доля этилового спирта составляла 62-70 %; массовая концентрация высших спиртов в пересчёте на изоамиловый спирт – 180-600 мг/100см3 безводного спирта; массовая концентрация альдегидов в пересчёте на уксусный альдегид – 3-50 мг/100см3 безводного спирта; массовая концентрация средних эфиров в пересчёте на уксусно-этиловый эфир – 50-250 мг/100см3 безводного спирта; массовая концентрация летучих кислот в пересчёте на уксусную, не более – 80 мг/100см3 безводного спирта; массовая концентрация фурфурола, не более – 3,0 мг/100см3 безводного спирта; массовая концентрация метилового спирта, не более – 1,2 г/дм3; массовая концентрация меди, не более – 8,0 мг/дм3; массовая концентрация общей сернистой кислоты, не более – 45 мг/дм3; массовая концентрация железа, не более – 1,0 мг/дм3.

Процесс разделения жидких смесей перегонкой основан на том, что жидкости, составляющие смесь, обладают различной летучестью, то есть, при одной и той же температуре обладают различной упругостью паров.

Альдегиды, ацетали, сложные эфиры, высшие спирты и другие летучие соединения, входящие в состав коньячных виноматериалов и спирта-сырца, обладают различной растворимостью в водно-спиртовых смесях и различной температурой кипения. В зависимости от температуры кипения все летучие вещества в коньячных виноматериалах можно разделить на две группы: низкокипящие и высококипящие.

Очистка спирта-сырца от летучих примесей при помощи перегонки основана на различии коэффициентов испарения или ректификации.

Летучесть вещества характеризуется коэффициентом его испарения

Ки = Спж,

где Ки- коэффициент испарения компонента;

Сп- концентрация компонента в паровой фазе;

Сж- концентрация компонента в жидкой фазе.

Коэффициенты испарения представляют собой отношение концентрации данного вещества в паровой фазе к концентрации его в жидкой фазе при условии, что рассматриваемые фазы находятся в равновесном состоянии. Абсолютные величины коэффициентов испарения этилового спирта зависят от крепости перегоняемой жидкости. В табл. приведены коэффициенты испарения некоторых компонентов спирта-сырца в зависимости от его крепости. Из данных этой табл. следует, что состав коньячного спирта во многом зависит от крепости дистиллируемого виноматериала или спирта-сырца. С увеличением крепости перегоняемой жидкости снижаются коэффициенты испарения всех основных примесей. При этом эфиры, альдегиды и особенно высшие спирты приобретают менее выраженный головной характер перегонки, а летучие кислоты – более выраженный хвостовой характер перегонки.

Содержание спирта в жидкости, % (по массе) Температура кипения, при 760 мм рт.ст, оС Содержание спирта в парах, % (по массе) Коэффициенты испарения Ки
Этанол Высш. спирты Уксусн. кислота Ацетальдегид Этил-ацетат
5,0 94,9 37,0 7,40 20.2 0.29 23.0 -
10,0 91,3 52,2 5,22 12.5 0.19 20.7 29.0
15,0 89,0 60,0 4,0 8.2 0.15 18.4 21.5
20,0 87,0 65,0 3,25 5.6 0.11 16.3 18.0
25,0 85,7 68,6 2,74 4.0 0.1 14.4 15.2
30,0 84,7 71,3 2,38 3.1 0.08 12.7 12.6

Отношение коэффициента испарения примеси к коэффициенту испарения этилового спирта называется коэффициентом ректификации примеси (Кр п),

Кр п= Ки пи с.

Коэффициент ректификации показывает: насколько легче испаряется примесь по сравнению с этиловым спиртом.

Поскольку коэффициенты ректификации характеризуют летучесть примесей по сравнению с летучестью этилового спирта, то их величины позволяют судить о степени очистки этилового спирта от той или иной примеси. Ориентируясь на них, можно определить, при какой спиртуозности этилового спирта летучая примесь носит головной (Кр.п >1), промежуточный (Кр.п =1) и хвостовой характер (Кр.п <1). Если коэффициент ректификации больше единицы, примесь испаряется быстрее этилового спирта и накапливается в головной фракции. Если коэффициент ректификации меньше единицы, примесь испаряется медленнее этилового спирта и перегоняется в хвостовую фракцию. Если коэффициент ректификации равен единице, примеси испаряются одновременно с этиловым спиртом, и при перегонке не будет происходить очистки коньячного спирта.

Таким образом, использование коэффициентов испарения и ректификации примесей дает возможность проводить анализ работы дистилляционных установок и определять в зависимости от спиртуозности перегоняемой жидкости условия накопления летучих веществ в дистиллятах.

Сачаво М. С. и сотрудники считают, что определение данных коэффициентов является сложным процессом, не исключающим дополнительные погрешности при определении состава перегоняемой среды. Кроме того, коэффициенты ректификации не позволяют судить о фактическом влиянии различных частей дистиллята на состав получаемых продуктов перегонки. С этой целью авторами предложен показатель обогащения дистиллята примесью, представляющий собой отношение содержания в частях дистиллята примесей к содержанию безводного спирта, в процентах от их содержания в продуктах перегонки. Если показатель обогащения примесью для дистиллята больше единицы, то эта часть дистиллята способствует обогащению конечного продукта перегонки этой примесью, а если меньше единицы – обеднению.

Процесс дистилляции виноматериалов и спирта-сырца в условиях коньячного производства не вполне укладывается в рамки теории перегонки бинарных смесей. Компоненты виноматериала многочисленны и разнохарактерны, хотя количественное их содержание по отношению к эталону и воде не велико. Специфические особенности дистилляции вин для получения коньячных спиртов требуют уточнения некоторых вопросов, связанных с коэффициентами испарения летучих соединений при различных режимах перегонки.

На результатах дистилляции сказывается также растворимость компонентов в этаноле и водно-спиртовых растворах разной концентрации, а также взаимная растворимость различных соединений. Поэтому динамика перехода летучих веществ в дистиллят зависит от многих факторов, а содержание их в различных фракциях дистиллята нельзя регулировать исходя только из величины коэффициентов ректификации отдельных соединений. Тем более что до настоящего времени идентифицированы далеко не все вещества, входящие в состав виноматериалов и коньячных спиртов, а для ряда соединений еще нет данных о величине коэффициентов ректификации.

По мнению Нягу И. лучшим способом определения момента перехода различных фракций является дегустация. Но знание характера и скорости перехода различных пахучих веществ позволяет лучше понять функционирование аппарата и в нужный момент вмешаться в процесс для получения оптимальных результатов перегонки.

В результате исследований, проведённых отечественными и зарубежными учёными, была установлена очерёдность перехода летучих веществ, при перегонке. Так при перегонке виноматериалов на коньячный спирт сначала переходят альдегиды, они придают дистилляту резкий запах, иногда с привкусом меди. Сложные эфиры переходят по-разному: одни в начале сгона, другие – в середине, очень высококипящие – в конце. Уксусно-этиловый эфир проходит целиком в начале сгона, летучие кислоты и, в частности уксусная, равномерно переходят в дистиллят весь период сгона, но к концу сгона их переход интенсивнее. Жирные кислоты с высоким молекулярным весом выделяются в первой части дистиллята; фурфурол, так же как и следы глицерина, обнаруживаются в течение всей перегонки; высшие спирты обильно переходят вначале, затем постепенно уменьшаются и полностью исчезают при крепости 20 % об.

По классической технологии перегонку вина на коньячный спирт ведут в два приема на простом перегонном аппарате шарантского типа. Вначале виноматериал крепостью 8-10 % об. перегоняют на спирт-сырец с целью перевода в дистиллят всего этилового спирта и сопутствующих ему летучих компонентов. При этом получается дистиллят крепостью 24-30 % об. Затем полученный спирт-сырец подвергают фракционной перегонке с отбором головной, средней и хвостовой фракций. Фракционная перегонка спирта-сырца является более ответственным процессом и требует соответственного навыка и внимания от аппаратчика. Особое внимание уделяется моменту появления дистиллята в фонаре и отбору головной фракции. В начале перегонки дистиллят имеет молочно-сизоватый оттенок и неприятный запах, обусловленный значительным содержанием в нем эфиров, альдегидов и высших спиртов. Отбор головной фракции прекращают, когда дистиллят становится прозрачным и без выраженных эфироальдегидных тонов. В зависимости от состава спирта-сырца объем головной фракции колеблется в пределах 1-3 % от объема загрузки куба. При дистилляции виноматериалов с посторонними тонами (гибридными, уксусными и др.) головную фракцию необходимо отбирать в объеме 2-3 %. Крепость головных фракций обычно составляет 75-80 % об., но самые первые фракции могут разбавляться до 60-65 % оставшимися в коммуникациях хвостовыми фракциями дистиллята от предыдущей перегонки. Отбор средней фракции (коньячного спирта) проводят обычно 6-7 ч. Когда крепость дистиллята понизится до 55-45 % об., а дистиллят приобретет кисловатый привкус, переходят к отбору хвостовой фракции. По данным Кишковского З. Н., во Франции принято переходить к отбору хвостовой фракции при крепости дистиллята 57-58 % об.[. Выход средней фракции обычно составляет 30-33 % от объема спирта-сырца или 85—92 % от количества безводного спирта в спирте-сырце. Спиртуозность средней фракции составляет 62—70 % об. и зависит от спиртуозности спирта-сырца и момента отделения хвостовой фракции. Перегонка хвостовой фракции длится около 3 ч. и прекращается при нулевой крепости дистиллята, выход составляет 17-23 % от объема сырца. Крепость хвостовых фракций колеблется от 15 до 20 % об. в зависимости от момента перехода на эту фракцию. Общие потери при получении коньячного спирта на аппаратах шарантского типа доходит до 5 % от исходного содержания спирта в виноматериале и зависят от условий перегонки и качества исходного сырья (виноматериала, спирта-сырца). Такой отбор фракций сложился эмпирически на основе органолептических свойств различных фракций дистиллята. Он обеспечивает определенное качественное и количественное соотношение летучих веществ в коньячном спирте. Однако пределы отбора головной фракции –от 1 до 3 % и хвостовой фракции от 55 до 45 % об. достаточно велики и существенно влияют как на выход коньячного спирта с единицы объема виноматериала, так и на его качество. В этой связи актуальной проблемой является разработка методики определения более точной величины отбора головной фракции и момента отделения хвостовой фракции в зависимости от состава спирта-сырца.

Образование летучих соединений в процессе дистилляции

Коньячный спирт, помимо этилового спирта, содержит альдегиды, ацетали, эфиры, высшие спирты, фурфурол, летучие кислоты, терпеновые соединения, лактоны и другие примеси, которые придают коньякам характерные букет и вкус. Часть этих летучих веществ образуются в ягоде винограда, другие (их большинство) образуются в процессе приготовления и хранения виноматериалов, а некоторые возникают при нагревании вина в перегонном кубе.

По поведению при дистилляции летучие вещества можно разделить на две группы. К первой группе относятся летучие компоненты, которые в процессе дистилляции переходят из виноматериала в спирт-сырец, а затем и в коньячный спирт без изменений. Во вторую группу входят вещества, претерпевающие химические изменения в процессе дистилляции. Содержание одних веществ изменяется в результате физико-химических процессов, а другие образуются вновь.

Таким образом, новообразование летучих компонентов при перегонке тесно связано с составом коньячных виноматериалов длительностью перегонки и материала, из которого изготовлена перегонная аппаратура. При длительном кипячении (8—10 ч) виноматериала или спирта-сырца в процессе перегонки по классической технологии (в медном аппарате) создаются благоприятные условия для прохождения сложных химических реакций, следствием которых является образование новых продуктов. В эти реакции вовлекаются как нелетучие соединения вина (углеводы, азотистые, фенольные соединения, кислоты и др.), так и летучие компоненты спирта-сырца. В результате этого в перегонном кубе происходит новообразование летучих соединений за счет реакций гидролиза, этерификации, окислительного расщепления и т. д.. Среди этих летучих компонентов могут быть как ценные, так и нежелательные для качества будущего коньяка.

Высокая температура вина в кубе, а также наличие кислорода, ионов меди, железа и других катализаторов создают благоприятные условия для интенсивного прохождения окислительно-восстановительных процессов, в которые вовлекаются многие соединения вина. Так, окисление спиртов и особенно окислительное дезаминирование аминокислот, приводит к образованию альдегидов — уксусного, изобутилового, изоамилового, бензилового, β-фенилэтилового и других. Возникающие при этом альдегиды содержат на один углеродный атом меньше, чем исходная аминокислота.

В современном коньячном производстве для обогащения коньячных спиртов «энантовыми» эфирами и улучшения их качества, в перегоняемое сырьё добавляют различное количество винных дрожжей. Согласно основным технологическим инструкциям по производству коньяков, в коньячных виноматериалах должно содержаться до 2 % дрожжей. В связи с тем, что такое количество дрожжей, не позволяет получить коньячный спирт с высоким содержанием «энантовых» эфиров, рядом исследователей было предложено вносить в перегоняемый виноматериал значительно большее их количество, а также добавлять дрожжи не только в перегоняемый виноматериал, но и в спирт-сырец.

По результатам исследований Postel W. при увеличении доли дрожжей в перегоняемом вине, практически линейно возрастает в его дистиллятах содержание этиловых эфиров капроновой, каприловой, каприновой, лауриновой, миристиновой и пальмитиновой кислот; изоамилкаприлата и изоамилкаприната. Из числа перечисленных эфиров больше всего содержится в дистилляте этилкаприната, этилкаприната и этиллаурината. В то же время автор отмечает, что с увеличением количества дрожжей в перегоняемом виноматериале происходит также увеличение концентрации ацетоина.

Однако, исследования, проведённые Сачаво М. С., Корниенко В. Н., показали, что с увеличением содержания дрожжей в перегоняемой среде в получаемых дистиллятах увеличивается содержание метилового спирта, что недопустимо. Кроме того, возможно также подгорание дрожжевой биомассы во время перегонки, что придаёт коньячным спиртам неприятные тона и снижает их качество. Для решения данной проблемы авторы предлагают добавлять в перегоняемую среду лизированную биомассу дрожжей, освобождённую от дрожжевого осадка. Спирты, полученные таким образом, содержат небольшое количество метанола, ацетальдегида и значительное количество (по сравнению с контролем) ценных для коньяков «энантовых» эфиров и b-фенилэтанола, что позволяет охарактеризовать их как высококачественные и перспективные для получения марочных коньяков.

Сирбиладзе А. Л. изучал зависимость качества коньячных спиртов от срока выдержки виноматериалов на дрожжах. В результате было установлено, что оптимальная продолжительность настаивания составила 1-2 месяца. При этом выдержанные коньячные спирты, полученные из данных виноматериалов, отличались повышенным содержанием кислот, эфиров, ацеталей, альдеидов, этилацетата, изобутиловых и изоамиловых спиртов.

Наши исследования показали, что роль живых дрожжевых клеток, содержащихся в перегоняемом виноматериале, не ограничивается обогащением спирта компонентами энантового эфира. Они в процессе нагревания виноматериала активно поглощают кислород и предотвращают глубокое окисление компонентов вина с образованием аминов, летучих фенольных соединений и других нежелательных продуктов окислительного распада. Косвенным подтверждением этой закономерности является положительное влияние биологического обескислораживания коньячного виноматериала (подбраживание) перед перегонкой на качество коньячного спирта. И, наоборот, при перегонке выдержанных (достаточно окисленных) вин коньячные спирты получаются низкого качества, что подтверждает образование летучих веществ, снижающих качество коньячного спирта. Такими веществами являются продукты глубокого окисления компонентов вина с образованием летучих фенолов, кислот С2 – С5, аминов, высококипящих соединений серы (2-метилтиоэтанол, 4-метилтиобутанол и др.).

В процессе перегонки происходит также и сахароаминная реакция (меланоидинообразования). Ее промежуточными продуктами являются алифатические альдегиды, альдегиды фуранового ряда, летучие кислоты и другие продукты. Количество этих соединений повышается по мере увеличения продолжительности перегонки. Реакция меланоидинообразования проходит более интенсивно в присутствии дрожжей, что влечет накопление больших количеств летучих веществ. Присутствующие в вине пентозы, метилпентозы, гексозы обеспечивают образование фурфурола, метилфурфурола, оксиметилфурфурола, а также фурилкарбинола, фурилакролеина и других нежелательных соединений.

Таким образом, перегонка вина является процессом, где проходят достаточно глубокие превращения входящих в его состав компонентов. В результате образуются новые продукты, часть из которых может отсутствовать в исходном вине. Их источником могут быть нелетучие компоненты вина (углеводы, азотистые и фенольные вещества), претерпевающие различные превращения в результате участия в окислительно-восстановительных процессах, реакциях меланоидинообразования, дегидратации и др. Среди продуктов, образованных в процессе перегонки виноматериалов на коньячный спирт, имеются компоненты положительно влияющие, относительно нейтральные и крайне нежелательные для формирования качества коньяка. Их образование и соотношение зависят от состава виноматериала и условий перегонки. Поэтому для получения коньячных спиртов стабильно высокого качества целесообразно перегону виноматериалов проводить в условиях, предотвращающих образование и переход в коньячный спирт нежелательных соединений (аминов, летучих фенолов, кислот, серосодержащих соединений и т.д.). Если удастся при этом обеспечить образование и переход в коньячный спирт ценных компонентов (эфиров жирных кислот С612, ароматических спиртов, альдегидов, лактонов и др.), то можно считать оптимальными условия перегонки виноматериалов на коньячный спирт. К этому должны привести исследования закономерностей образования и перехода в коньячный спирт соответствующих компонентов.

Для получения качественных коньячных спиртов необходимо дифференцировать момент отделения хвостовой фракции в зависимости от органолептических свойств и содержания в перегоняемом спирте-сырце летучих кислот, аминов, сернистых соединений, других нежелательных компонентов. Их концентрации зависят от состава виноматериала и оказывают существенное влияние на качество и выход коньячного спирта.

Исследования показали, что наиболее выраженным сортовым ароматом винограда отличаются коньячные спирты, полученные из качественных виноматериалов с минимальным (0,8 %) отбором головной фракции и сравнительно поздним отделением хвостовой фракции (при крепости дистиллята 45-50 % об.) при условии, если в перегоняемом виноматериале или спирте-сырце концентрация изоамилацетата была менее 1 мг/100 см3 б.с. При большей концентрации изоамилацетата в перегоняемой жидкости и минимальном отборе головной фракции (0,8 %), в коньячный спирт переходит относительно большое количество изоамилацетата, который сильно маскирует сортовой аромат и усиливает неприятные сивушные тона в аромате и вкусе коньячного спирта. Увеличение отбора головной фракции до 3 % значительно снижает сортовой аромат и сивушные тона в коньячном спирте. Учитывая, что среди эфиров, содержащихся в молодом и здоровом виноматериале, наибольшей органолептической активностью обладает изоамилацетат, а в виноматериалах, подвергшихся уксуснокислому скисанию – этилацетат, нами предложены эмпирические уравнения для определения величины головной фракции исходя из концентраций этих эфиров.

при А>1;

при B>50,

где Х1, Х2 -величина головной фракции, %;

А - концентрация изоамилацетата в спирте-сырце, мг/100 см3 б.с.;

В - концентрация этилацетата в спирте-сырце, мг/100 см3 б.с.

При А < 1 и В < 50 отбирают 0,8 % головной фракции, в остальных случаях из двух величин - Х1 и Х2 головных фракций, определенных по уравнениям, берут большую.

Момент отделения хвостовой фракции рекомендуем определять по содержанию в виноматериале летучих кислот, так как содержание в спирте-сырце других нежелательных компонентов (летучих аминов, тиоспиртов) невозможно определять в производственных условиях. При содержании летучих кислот более 1 г/дм3 хвостовую фракцию отделяют при крепости дистиллята 55-50 % об., а при меньшем их содержании хвостовую фракцию можно отделять при крепости 50-45 % об. с учетом органолептических свойств дистиллята. Все это позволяет стабилизировать состав и органолептические свойства коньячных спиртов.

Опыты по использованию головных и хвостовых фракций дистиллята в коньячном производстве показали, что наиболее рациональным является следующая схема: в начале сезона, при перегонке качественных виноматериалов, головные и хвостовые фракции используют для доливки коньячных виноматериалов, подлежащих более длительному хранению. В конце сезона перегонки головные фракции объединяются с хвостовыми, нейтрализуются пищевой содой или мелом, подвергаются сорбционной очистке активированным углем или углеродминеральным сорбентом СГН 30А, а затем перегоняются на коньячный спирт, который, после выдержки, используется для производства экстрактивных спиртованных вод, вводимых в купажи ординарных коньяков. Таким образом, для целенаправленного повышения качества и увеличения выхода коньячных спиртов необходимо дифференцировать режим перегонки виноматериалов на коньячный спирт и схему использования головных и хвостовых фракций с химическим составом и органолептическим свойством перегоняемого виноматериала или спирта-сырца с целью получения коньячного спирта с минимальным содержанием нежелательных компонентов и оптимальным содержанием первичных и вторичных ароматических веществ, участвующих в формировании высокого качества коньяков.


Поделиться с друзьями:

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.033 с.