Скрап-рудный процесс плавки стали в основной мартеновской печи. — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Скрап-рудный процесс плавки стали в основной мартеновской печи.

2017-07-09 1062
Скрап-рудный процесс плавки стали в основной мартеновской печи. 0.00 из 5.00 0 оценок
Заказать работу

Скрап-рудный процесс плавки стали в основной мартеновской печи.

Особенностью основного мартеновского процесса является то что он позволяет получать сталь с низким содержанием вредных примесей (фосфора, серы) из рядовых шихтовых материалов.

Плавку начинают с загрузки твердой шихты (железная руда, известняк, лом). После загрузки твердой шихты и прогрева ее, заливают жидкий чугун. С этого момента начинается период плавления шихты, в результате которого окисляются примеси чугуна (кремний, фосфор, марганец и частично углерод).

Кремний окисляется и переходит в шлак почти полностью в период плавления.

Фосфор окисляется одновременно с кремнием и марганцем, когда температура металла еще не высока.

Оксиды кремния (SiO2), фосфора (P2O5), марганца (MnO), кальция (CaO) образуют железисто-углеродистый шлак, способствующий удалению фосфора. При переработке обычного чугуна для понижения содержания фосфора в металле проводят однократное скачивание шлака.

После расплавления шихты, окисления значительной части примесей и разогрева металла начинается период кипения ванны. В печь загружают железную руду или продувают ванну кислородом. Углерод в металле интенсивно окисляется. Этот процесс играет очень важную роль, так как выравнивание состава и температуры металла в мартеновской печи осуществляется за счет кипения ванны. При кипении происходит удаление газов из металла, всплывание и поглощение шлаком неметаллических включений, увеличивается поверхность раздела между шлаком и металлом, что способствует ускорению процессов удаления вредных примесей (фосфора, серы).

Ввиду высокой окисленности шлака, удаление серы из металла менее эффективно, чем фосфора. Для удаления серы наводят новый шлак. Для получения стали с низким содержанием серы, проводят обработку металла внепечными методами в ковше.

В период кипения ванны интенсивно окисляется углерод. Поэтому при составлении шихты для плавки необходимо, чтобы в ванне к моменту расплавления содержание углерода было на 0,5 – 0,6% выше, чем в готовой стали. Процесс кипения считают закончившимся, когда содержание углерода в металле соответствует заданному, а содержание фосфора минимально. После этого сталь раскисляют и выпускают в сталеразливочный ковш.

Кислый мартеновский процесс.

В настоящее время кислый мартеновский процесс имеет ограниченное применение в виду высоких требований к чистоте шихты. В кислой печи процесс ведут с кислым шлаком, поэтому удаление из металла серы и фосфора невозможно. Для ведения кислого процесса используют высококачественные древесно-угольные или коксовые чугуны, в которых содержание вредных примесей не превышает 0,025%.

Металлический лом, поступающий с других предприятий, переплавляют в основных печах для получения шихтовой заготовки, загружаемой вместо лома и полупродукта.Жидкий полупродукт выпускают из основной печи в ковш и затем переливают в кислую печь. Такой процесс называют дуплекс-процессом, так как в нем участвуют два агрегата – основная и кислая мартеновская печи.

Топливо при кислом процессе должно содержать минимальное количество серы. Стали, выплавляемые в кислых мартеновских печах, содержат меньше неметаллических включений, водорода и кислорода, чем выплавляемые в основной печи. Поэтому кислая сталь имеет более высокие механические свойства, особенно ударную вязкость и пластичность, и ее используют для особо ответственных деталей (коленчатых валов крупных двигателей, артиллерийских орудий, роторов мощных турбин).

Плавильные печи бывают дуговыми; индукционными.

Основное количество электростали выплавляют в дуговых печах.

Дуговая плавильная печь

Шихтовые материалы загружают на под печи сверху в открываемое рабочее пространство. После их расплавления в печи образуется слой металла и шлака. Плавление и нагрев шихты осуществляется за счет тепла электрических дуг, возникающих между электродами и жидким металлом или металлической шихтой.

 

В основной дуговой печи можно осуществить плавку двух видов: 1) без окисления примесей методом переплава шихты из легированных отходов; 2) с окислением примесей на углеродистой шихте. Плавка без окисления примесей Шихта для такой плавки должна иметь низкое содержание фосфора и меньше, чем в выплавляемой стали, марганца и кремния. Производят нагрев и расплавление шихты. По сути это переплав. Однако в процессе плавки часть примесей окисляются (алюминий, титан, кремний, марганец). После расплавления шихты из металла удаляют серу, наводя основной шлак. При необходимости науглероживают и доводят металл до заданного химического состава. Затем проводят диффузионное раскисление, подавая на шлак мелкораздробленный ферросилиций, алюминий, молотый кокс. Плавкой без окисления примесей выплавляют стали из отходов машиностроительных заводов.

Плавка с окислением примесей В печь загружают шихту, состоящую из стального лома (~90%), чушкового передельного чугуна (до 10%), электродного боя или кокса для науглероживания металла и известь (2-3%). Затем опускают электроды, включают ток и начинают плавку. Шихта под действием тепла дуги плавится. Во время плавления шихты окисляются железо, кремний, фосфор, марганец и частично углерод. Оксид кальция и оксиды железа образуют основной железистый шлак, способствующий удалению фосфора из металла.

После прогрева металла и шлака до температуры 1500 – 1550 °С в печь загружают руду и известь и проводят период кипения. Когда содержание углерода будет меньше заданного на 0,1%, кипение прекращают и удаляют из печи шлак. Затем проводят удаление серы и раскисление металла, доведение химического состава до заданного.

Для определения химического состава металла берут пробы и при необходимости в печь вводят ферросплавы для получения заданного химического состава металла. Затем выполняют конечное раскисление стали и выпускают из печи в ковш.

 

Индукционная плавильная печь В соответствии с заданным химическим составом металла при загрузке тщательно подбирают состав шихты. Необходимое для этого количество ферросплавов загружают на дно тигля вместе с шихтой. После расплавления шихты на поверхность металла загружают шлаковую смесь для уменьшения тепловых потерь металла и уменьшения угара легирующих элементов, а также для защиты его от насыщения газами.

При плавке в кислой печи после расплавления и удаления шлака наводят новый шлак с высоким содержанием SiO2. Металл раскисляют ферросилицием, ферромарганцем и алюминием перед выпуском его из печи. В печах с кислой футеровкой выплавляют конструкционные стали, легированные другими элементами.

В печах с основной футеровкой выплавляют высококачественные легированные стали с высоким содержанием марганца, никеля, титана, алюминия.
Индукционные печи имеют ряд преимуществ перед дуговыми. Основными их них являются:

· отсутствие электрической дуги, что позволяет выплавлять сталь с низким содержанием углерода, газов и малым угаром элементов;

· наличие электродинамических сил, которые перемешивают металл в печи способствуют выравниванию химического состава, всплыванию неметаллических включений;

· небольшие размеры печей позволяют помещать их в камеры, где можно создать любую атмосферу или вакуум.

К недостаткам этих печей можно отнести:

· недостаточная температура шлака для протекания металлургических процессов между металлом и шлаком;

· малая стойкость футеровки, что приводит к частым ремонтам и остановкам.

Поэтому в индукционных печах выплавляют сталь из легированных отходов методом переплава или методом сплавления чистого шихтового железа и скрапа с добавкой ферросплавов.

Повышение качества стали Проведение технологических операций, направленных на повышение качества металла, чаще всего выносят за пределы сталеплавильных агрегатов для исключения снижения их производительности. В последние годы широкое применение находит так называемая внепечная обработка жидкой стали, применяемая с целью выравнивания состава и температуры, раскисления и легирования, удаления газов, неметаллических включений и вредных примесей. Металл обрабатывают одним каким-либо способом или одновременно несколькими способами в сталеразливочном ковше, снабженным устройством для вдувания газопорошковых и газовых струй, или в агрегате типа конвертера. Способы повышения качества стали можно разделить на две группы: 1) способы повышения качества жидкой стали; 2) переплавные способы.

Разливка стали

Способы разливки стали

Применяют два основных способа разливки стали:

· разливка в изложницы;

· непрерывная разливка.

Разливку в изложницы

Разливку в изложницы подразделяют на два вида:

· разливка сверху;

· сифонная разливка.

Разливка сверху

При разливке сверху сталь из ковша непосредственно поступает в изложницы. После заполнения каждой изложницы ковш транспортируют к следующей изложнице и после заполнения ее цикл повторяется.

Сифонная разливка При сифонной разливке сталью одновременно заполняют несколько изложниц (от двух до нескольких десятков). Жидкая сталь из ковша поступает в установленную на поддоне центровую, а из нее по каналам в поддоне в изложницы снизу. После наполнения всех установленных на поддоне изложниц ковш транспортируют к следующему поддону. Оба способа разливки широко применяются на практике. Каждый из них имеет свои достоинства и недостатки. Однозначного ответа на вопрос, какой из них является лучшим, до сих пор нет. Благодаря простоте и отсутствию потерь металла с литниками часто предпочитают разливку сверху. Разливка сверху " для рядовых марок стали является более экономичной, чем разливка сифоном. В то же время высококачественные и легированные стали, когда для уменьшения потерь дорогостоящего металла при зачистке важно получить чистую поверхность слитка, разливают преимущественно сифоном.

Непрерывная разливка стали Сущность способа непрерывной разливки заключается в том, что жидкую сталь непрерывно заливают в водоохлаждаемую изложницу без дна - кристаллизатор, из нижней части которого вытягивают затвердевший по периферии слиток с жидкой сердцевиной (рисунок 37). Далее слиток движется через зону вторичного охлаждения, где полностью затвердевает, после чего его разрезают на заготовки определенной длины. Разливку ведут до израсходования металла в сталеразливочном ковше. До начала разливки в кристаллизатор вводят временное дно, называемое затравкой.

Агрегаты для разливки стали этим методом называют машинами непрерывного литья заготовок (МНЛЗ) или установками непрерывной разливки ста-ли (УНРС). Существует несколько типов машин непрерывной разливки, из которых наиболее распространение получили вертикальные, криволинейные, горизонтальные (рисунок 38).

В зависимости от количества одновременно отливаемых слитков машины могут быть одноручьевыми, двухручьевыми и многоручьевыми. На машинах непрерывной разливки отливают заготовки квадратного сечения (блюмы), прямоугольного (слябы), круглого и полые круглые заготовки для производства труб.

Главные преимущества непрерывной разливки стали перед разливкой в изложницы заключаются:

· в повышении выхода годного металла (вследствие отсутствия усадочной раковины в заготовках, полученных при непрерывной разливке);

· в отсутствии необходимости строительства и эксплуатации обжимных станов (блюмингов и слябингов);

· в снижении химической неоднородности металла;

· в уменьшении затрат ручного труда;

· в улучшении условий труда при разливке;

· в возможности автоматизации процесса разливки.

 

ОМД

Под обработкой давлением понимают методы получения изделий путем пластической деформации металлов и сплавов.

 

а — прокатка; б — прессование; в — волочение; г — ковка; д — листовая штамповка; е — объемная штамповка Прокатка(рис. 13.1, а) используется для обжатия заготовки 1 между вращающимися валками 2 прокатно­го стана в целях уменьшения поперечных размеров заготовки и придания ей заданной формы. Силы трения Ртр затягивают заготовку в валки, а силы F деформируют ее.

Прессование (рис. 13.1,6) представляет собой процесс вытеснения металла заготовки 1 через отверстие матрицы 2; при этом сечение выходного конца заготовки соответствует контуру отверстия в матрице. Заготовка помещается в контейнер 3, в котором на нее воздейству­ет с силой F давящий инструмент 4.

При волочении с силой F протяги­вают заготовку 1 через отверстие волочильного очка (во­локу) 2. Площадь выходного сечения волоки меньше площади сечения исходной заготовки.

Ковка применяется для изменения формы и размеров заготовки 1 за счет последователь­ного воздействия с силой F инструмента 2.

Штамповка вводится с целью изменения формы и размеров заготовки в специально изготовленном для каждой детали штампе. Штампом называется деформи­рующий инструмент, под воздействием которого матери­ал или заготовка приобретает форму и размеры, соответ­ствующие поверхности или контуру этого инструмента. Штамповку разделяют на листовую (рис. 13.1, д) - заго­товка 1 деформируется пуансоном 2 и матрицей 3 и объ­емную (рис. 13.1, е) —заготовка 1 деформируется в штам­пе из двух половин 2

Цель доменного производства состоит в получении чугуна из железных руд путем их переработки в доменных печах. Сырыми материалами доменной плавки являются топливо, железные и марганцевые руды и флюс.

Топливом для доменной плавки служит кокс, получаемый из каменного угля. Его роль состоит в обеспечении процесса теплом и восстановительной энергией. Кроме того кокс разрыхляет столб шихтовых материалов и облегчает прохождение газового потока в шихте доменной печи.

Железные руды вносят в доменную печь химически связанное с другими элементами железо. Восстанавливаясь и науглероживаясь в печи, железо переходит в чугун. С марганцевой рудой в доменную печь вносится марганец для получения чугуна требуемого состава.

Флюсом называются добавки, загружаемые в доменную печь для понижения температуры плавления пустой породы руды, офлюсования золы кокса и придания шлаку требуемых технологией выплавки чугуна физико-химических свойств. Для руд с кремнеземистой (кислой) пустой породой в качестве флюса используют материалы, содержащие оксиды кальция и магния: известняк и доломитизированный известняк.

Для получения высоких технико-экономических показателей доменной плавки сырьё и материалы предварительно подвергают специальной подготовке.

Сущность доменного процесса

Устройство доменной печи

Чугун выплавляют в печах шахтного типа - доменных печах. Сущность процесса получения чугуна в доменных печах заключается в восстановлении оксидов железа, входящих в состав руды, оксидом углерода, водородом и твёрдым углеродом, выделяющимся при сгорании топлива в печи.

Рисунок 1 - Устройство доменной печи: 1 - горячее дутьё; 2 - зона плавления (заплечики и горн); 3 - зона восстановления FeO (распар); 4 - зона восстановления Fe2O3(шахта); 5 - зона предварительного нагрева (колошник); 6 - загрузка железорудных материалов, известняка и кокса; 7 - доменный газ; 8 - столб железорудных материалов, известняка и кокса; 9 - выпуск шлака; 10 - выпуск жидкого чугуна; 11 - сбор отходящих газов

Колошник- верхняя цилиндрическая часть, куда при помощи засыпного аппарата загружаются проплавляемые материалы, а от боковых сторон его по газоотводам удаляются колошниковые газы.

Шахта - расположена под колошником. В ней в определённой последовательности идут процессы подготовки материалов, восстановление из окислов руды железа и других элементов, науглероживание железа и плавление образовавшегося сплава. Шахте придаётся форма расширяющегося книзу усечённого конуса для облегчения опускания из колошника загруженных материалов.

Распар - самая широкая цилиндрическая часть печи, где происходит плавление пустой породы руды и флюса с образованием из них шлака.

В заплечиках, следующей части печи в виде усечённого и расширяющегося кверху конуса, процесса шлакообразования заканчивается. Здесь остается в твёрдом состоянии только горючее и часть флюса.

В горне происходит горение спустившегося сверху топлива и накапливаются в жидком состоянии чугун и шлак. Горячий воздух для сжигания топлива от воздухонагревателей подводится к печи по кольцевому воздухопроводу через фурмы. Чугун и шлак накапливаются на дне горна, называемом лещадью, расположенной на мощном железобетонном фундаменте.

Чугун выпускается из печи через лётку, расположенную на дне лещади, по желобам в ковши, а шлак в специальные ковши через две шлаковые лётки.

В верхней части печи имеется малый конус засыпного аппарата, на который попадает шихта, при опускании его шихта попадает в чашу. Из чаши шихта попадает на большой конус, при опускании которого шихтовые материалы попадают в доменную печь, предотвращая при этом выход газов из доменной печи в атмосферу. Для равномерного распределения шихты в доменной печи малый конус и приёмная воронка после очередной загрузки поворачивается на угол кратный 60є.

При работе печи шихтовые материалы, проплавляясь, опускаются, а через загрузочное устройство в печь попадаются новые порции шихты в таком количестве, чтобы весь полезный объём печи был заполнен. Полезный объём печи - это объём, занимаемый шихтой от лещади до нижней кромки большого конуса засыпного аппарата при его опускании. Современные доменные печи имеют полезный объём 2000…50000 мі, полезная высота доменной печи достигает 35 м, это более чем в три раза превосходит диаметр её поперечного сечения.

Это позволяет доменной печи, работающей по принципу встречного движения материалов и газов, иметь более высокий коэффициент полезного использования тепла (до 85%).

Кладка лещади и горна выполняется из углеродистых блоков и высокоглинозёмистых кирпичей, а заплечики, распар и шахта - из шамотных кирпичей высшего качества.

Лещадь и горн заключены в мощный стальной кожух и интенсивно охлаждаются водой при помощи специальных холодильников, к которым подведены две водопроводные магистрали, из них одна находится в работе, а другая - в резерве.

Колошник футерован стальными неохлаждаемыми плитами, полости которых заполнены шамотным кирпичом. Купол печи футерован чугунными плитами.

 

Сырье для производства чугуна Для выплавки чугуна в доменных печах используют железные руды, топливо, флюсы в виде специально подготовленной смеси (шихты). При доменной плавке могут использоваться также отходы производства, содержащие Fe, Mn, CaO, MgO. К ним относят колошниковую пыль, окалину, сварочный и мартеновский шлаки.

Железные руды Железные руды представляют собой горные породы. Верхняя зона земной коры мощностью около 16 км содержит в среднем 4,9% Fe, входящего в состав более 350 минералов горных пород. Такие широко распространенные горные породы как гранит, базальт содержат 3 – 9% Fe. Однако, в настоящее время столь бедные железом породы, пока не используются. Железо в земной коре в чистом виде не встречается, а находится обычно в соединениях с кислородом, так как обладает сравнительно большим сродством к кислороду.В природе в большинстве случаев, железо встречается в виде:

· магнитной окиси железа Fe3 О4 (магнитный железняк или магнетит);

· безводной окиси железа Fe2 O3 (красный железняк или гематит);

· водной окиси железа Fe2 O3 ⋅ nH2 O (бурый железняк или гетит);

· соединения железа с двуокисью углерода FeСO3.

 

Магнитная окись железа Магнитная окись железа в рудах представлена минералом магнетитом. Руду, содержащую в основном магнетит, называют магнитным железняком. Магнетит можно рассматривать как закись-окись железа FeO ⋅ Fe2 О3. Под действием влаги и кислорода атмосферы закись железа в молекуле FeO ⋅ Fe2 О3 реагирует с кислородом воздуха, переходя в безводную окись железа Fe2 О3.Образовавшийся минерал по составу является гематитом, но отличается кристаллической решеткой и называется мартитом. Поэтому магнетит в природных условиях всегда окислен. Для характеристики окисленности магнетита принято пользоваться отношением Feобщ / FeFeO. В чистом магнетите это отношение равно 3,0. Обычно к магнитным железнякам относят руды, в которых это отношение меньше 3,5. При отношении равном 3,5 – 7,0, руды относят к полумартитам, а при отношении, большим 7 – к мартитам.Магнитный железняк встречается обычно в виде крепких кусковых руд. Он содержит: 55 – 60 % Fe, 0,02 – 2,5 % S, 0,02 – 0,7 % Р и обычно кислую пустую породу (SiO2, Al2 О3). Магнетит характеризуется высокой магнитной восприимчивостью, и поэтому магнитные железняки можно обогащать электро-магнитным способом.

Безводная окись железа Безводная окись железа в рудах представлена минералом гематитом. Руду, содержащую в основном гематит называют красным железняком, являющимся продуктом выветривания магнитных железняков или в значительной степени окисленным магнетитом. Руды бывают кусковатые, иногда пылевидные. В плотных породах цвет гематита меняется от стального до стально-черного. Для пылевидных руд характерен красный цвет. Красный железняк содержит 50 – 60% Fe, и обычно в таких рудах содержится мало серы и фосфора. Пустая порода таких руд обычно состоит из SiO2 и Al2 O3. Водная окись железа Водная окись железа представлена в рудах обычно минералами лимонитом или гетитом. Руды, содержащие эти минералы называются бурыми железняками (общая формула Fe2 O3 ⋅ nH2 O). Бурый железняк образуется при окислении железных руд других типов. Он наиболее распространен в земной коре, но используется сравнительно в небольшом количестве, так как трудно поддается обогащению. В добываемых рудах обычно содержится 25 – 50% Fe и повышенное количество фосфора (0,5 – 1,5% Р). Состав руды бывает разнообразен не только в различных, но и в пределах одного месторождения. Бурые железняки, наиболее легко восстанавливаемые руды, благодаря малой плотности и большой пористости. В большинстве случаев руды загрязнены вредными примесями – фосфором, серой, мышьяком. Пустая порода глинистая, иногда кремнисто-глинистая.

Карбонат железа Карбонат железа представлен в руде минералом сидеритом или углекислым железом FeCO3, и руды, содержащие в основном сидерит, называются шпатовыми железняками. В рудах содержится 30 – 40% Fe. Часто сидериты содержат серу. Кроме указанных соединений железа, в рудах присутствуют различные соединения пустой породы и примеси, которые в зависимости от вида плавки могут быть полезными и вредными. Полезные примеси Полезными примесями являются марганец, никель, хром, ванадий.Марганец улучшает механические свойства чугуна и стали, способствует удалению серы при десульфурации жидкого металла. Никель и хром повышают коррозионную стойкость стали. Благоприятное воздействие на качество стали оказывают ванадий и титан. Вредные примеси Вредными примесями являются сера, фосфор, мышьяк, цинк, свинец, медь. Сера придает металлу красноломкость, снижая его механические свойства. Фосфор вызывает в металле хладноломкость, ухудшая свойства металла при низких температурах. Мышьяк понижает свариваемость металла, ухудшает механические свойства. Кроме того, является сильным ядом и присутствие его недопустимо в металлоизделиях, применяемых в пищевой промышленности (емкости для варки пищи, консервные банки). Цинк и свинец не растворяются в чугуне, поэтому они не могут влиять на его качество. Однако, цинк при плавке возгоняется и пары его, проникая в швы кладки, приводят к увеличению ее объема и разрушению кожуха печи. Свинец также способствует разрушению футеровки печи. Медь понижает свариваемость металла и придает ему красноломкость. Однако, в некоторых случаях, фосфор и медь могут являться полезными примесями. Например, при выплавке некоторых марок стали. Пустая порода руд преимущественно состоит из SiO2, Al2O3, СаО и MgО, которые находятся в виде различных соединений. Для доменной плавки желательно, чтобы отношение (СаО + MgО) / (SiO2 + Al2O3) ≈ 1. В этом случае снижается или отпадает совсем потребность во флюсе, увеличивается подвижность доменных шлаков. В природе такие руды встречаются очень редко и называются самоплавкими

Сырье для производства черных металлов и сплавов Для производства металлов необходимы следующие материалы: руда, топливо, флюсы, огнеупорные материалы. Руда Руда представляет собой полезное ископаемое, добываемое из недр земли. Это горная порода, из которой при данном уровне развития техники экономически целесообразно извлекать металлы. Например, в настоящее время целесообразно перерабатывать руды, если содержание металла в них составляет:

· железа – 20 – 60%;

· меди – 1 – 3%;

· никеля – 0,3 – 1,0%;

· молибдена – 0,005 – 0,02%.

По мере развития техники указанные пределы постепенно снижаются и переработке подвергаются руды с меньшим содержанием полезного компонента.

Руда состоит из минералов, содержащих полезный металл и так называемую пустую породу. Пустая порода может быть:

· кремнистой, представленной кварцем – SiO2;

· глиноземистой, содержащей значительное количество глинозема – Al2O3;

· магнезиальной, содержащей в своем составе соединения магния.

В зависимости от содержания добываемого металла руды бывают богатые и бедные. Бедные руды обогащают, то есть удаляют из руды часть пустой породы, в результате получают концентрат с повышенным содержанием добываемого металла.

Руды обычно называются по одному или нескольким металлам, содержащимся в них. Например, железные, марганцевые, медные, хромоникелевые, железо-ванадиевые и др.

Запасы руд делят в зависимости от степени изученности на несколько категорий, обозначаемых буквами латинского алфавита А, В, С.

К категории А (промышленные запасы) относятся месторождения, по которым проведено разведочное бурение по частой сетке скважин и форма рудного тела выявлена с достаточной точностью. Утверждение месторождения по категории А является основанием для начала строительства металлургического завода.

К категории В (вероятные запасы) относятся месторождения, обуренные по редкой сетке скважин, что делает затруднительным определение точной формы рудного тела. Если месторождение отнесено к категории В, то это может служить основанием для проектирования, но не для строительства металлургического завода.

К категории С (ориентировочные запасы) относят месторождения, форма рудного тела в которых известна лишь в самых общих чертах, по естественным обнажениям или геофизическим данным. Запасы руды по категории С могут использоваться только при перспективном планировании развития металлургии.

Сумма запасов (А + В + С) называется общими балансовыми запасами руд.

Топливо Топливо в металлургической промышленности используется в виде кокса, природного газа, мазута. Оно служит не только как горючее для нагрева и расплавления материала, но и как реагент в химических реакциях металлургических процессов.

Флюсы Флюсы представляют собой материалы, загружаемые в плавильную печь для образования легкоплавкого соединения с пустой породой руды и золой топлива. Такое соединение называют шлаком. Он имеет меньшую плотность, чем металл, поэтому располагается над металлом, защищая металл от печных газов и воздуха. Шлак называют кислым, если в его составе преобладают кислотные оксиды SiО2, Р2О5 и основным, если в его составе больше основных оксидов – СаО, MgО.

Огнеупорные материалы Огнеупорные материалы применяют для изготовления внутреннего слоя (футеровки) металлургических печей. Они должны:

· выдерживать нагрузки при высоких температурах;

· противостоять резким изменениям температур, химическому воздействию шлака и печных газов.

Огнеупорность материала определяется температурой его размягчения.

По химическим свойствам огнеупорные материалы разделяют на: Кислые Кислые – это материалы, содержащие значительное количество кремнезема SiO2. Например, кварцевый песок (95% SiО2), динасовый кирпич. Основные Основные – это материалы, содержащие основные оксиды (СаО, MgО). Например, магнезитовые кирпич, порошок. Нейтральные Нейтральные – это материалы, содержащие большое количество Al2O3 и Cr2O3. Например, хромомагнезитовые, шамотные кирпичи. При высоких температурах футеровка печи взаимодействует с флюсами и шлаками. Если в печи, имеющей футеровку, выложенную основным огнеупорным материалом, применять кислые флюсы, то в процессе плавки образуются кислые шлаки, которые, взаимодействуя с основной футеровкой, будут разрушать ее. То же произойдет, если в печи, выложенной огнеупорными материалами из кислых оксидов, применить основные флюсы. Поэтому в печах с кислой футеровкой используют кислые шлаки, а в печах с основой – основные. Высокой огнеупорностью обладают углеродистые материалы, содержащие до 92% углерода в виде графита. Материалы применяются в виде кирпичей, блоков для кладки лещади доменных печей, электролизных ванн для получения алюминия, тиглей для наплавки медных сплавов.

Подготовка железных руд Современное доменное производство предъявляет к железорудным материалам очень высокие требования. Эти материалы должны:

иметь высокое содержание железа;

· низкую концентрацию вредных примесей;

· оптимальный размер кусков (20 – 40 мм);

· высокую прочность, чтобы при транспортировке и в ходе плавки куски не разрушались с образованием мелких фракций;

· иметь постоянный химический состав больших масс материалов.

Железорудные материалы в естественном состоянии этим требованиям не удовлетворяют. Большинство руд имеют невысокую концентрацию железа или содержат большое количество пустой породы. При плавке таких руд образуется большое количество шлака, требующего повышенного расхода кокса. Некоторые руды содержат вредные примеси, снижающие качество металла или требующие дополнительного расхода на их удаление.

При добыче руд образуются очень крупные куски (до 1500 мм), присутствие которых в шихте снижает скорость восстановления и теплопередачи, а также много мелочи (до 10 мм), ухудшающей газопроницаемость шихты и вызывающей снижение хода процесса восстановления и, следовательно, производительности доменной печи.

Большинство месторождений железных руд имеют неодинаковый химический состав, даже в пределах одного забоя.

Все это требует специальной подготовки руд перед загрузкой их в доменную печь. Основными способами подготовки руд являются:

· дробление для уменьшения размеров кусков руды и сортировка по классам крупности;

· обогащение для снижения содержания пустой породы;

· усреднение, в результате которого уменьшаются колебания химического состава руд;

· окускование, благодаря которому становится возможным использование пылевидных и мелкокусковатых материалов.

Дробление и измельчение Добываемая из земных недр руда подвергается дроблению и измельчению, так как величина крупных кусков при добыче превышает размеры кусков руды, допустимых по условиям технологии доменной плавки.

Для крупного и среднего дробления используют установки, называемые дробилками, а для тонкого измельчения применяют мельницы. Дробление и измельчение – дорогостоящий и энергоемкий процесс. процесс дробления разделяют на несколько стадий, используя для каждой стадии подходящий тип дробилки, и перед каждой из них проводят классификацию с целью выделения готовых по размеру кусков и мелочи, чтобы не подвергать их повторному дроблению. Различают следующие стадии дробления:

· крупное дробление от 1500 до 250 мм;

· среднее дробление от 250 до 50 мм;

· мелкое дробление от 50 до 5 мм;

· тонкое измельчение до 0,04 мм.

Дробление выполняется следующими методами:

· раздавливанием;

· истиранием;

· раскалыванием;

· ударом;

· сочетанием перечисленных способов.

Для крупного и среднего дробления используют в основном щековые и конусные дробилки, для мелкого дробления – валковые и молотковые, а для тонкого измельчения – шаровые мельницы.

Щековая дробилка Щековая дробилка состоит из трех основных частей:

· неподвижной вертикальной плиты, называемой неподвижной щекой;

· подвижной щеки, подвешенной в верхней части;

· кривошипно-шатунного механизма, сообщающего подвижной щеке колебательные движения.

Материал в дробилку загружают сверху. При сближении щек происходит разрушение кусков. При отходе подвижной щеки раздробленные куски опускаются под действием собственного веса и выходят из дробилки через разгрузочное отверстие.

Конусная дробилка

Конусные дробилки работают по такому же принципу, что и щековые, но отличаются от них по конструкции.

Конусная дробилка состоит из:

· неподвижного конуса;

· подвижного конуса, подвешенного в верхней части;

· привода.

Ось подвижного конуса входит эксцентрично во вращающийся вертикальный стакан, благодаря чему подвижный конус совершает кругообразные движения внутри большого. При приближении подвижного конуса к какой-то части неподвижного происходит дробление кусков. А в диаметрально противоположной части дробилки, где поверхности конусов удалены на максимальное расстояние, происходит разгрузка дробленой руды.

Молотковая дробилка

Для дробления хрупких и глинистых руд обычно используются молотковые дробилки, в которых основной частью является вращающийся с большой скоростью ротор с закрепленными на нем стальными молотками.

Дробление материала происходит под действием многочисленных ударов молотков по падающим кускам материала.

Шаровая мельница

Для тонкого размельчения наиболее распространены шаровые мельницы, в которых удар сочетается с истиранием. Они представляют собой вращающиеся вокруг горизонтальной оси цилиндрические барабаны, в которых вместе с кусками руды находятся стальные шары. В результате вращения барабана шары, достигнув определенной высоты, скатываются или падают вниз, осуществляя измельчение кусочков руды.

Мельницы работают в непрерывном режиме. Загрузка руды осуществляется в одну пустотелую цапфу, а выгрузка происходит через другую. Как правило, измельчение проводится в водной среде, благодаря чему устраняется пылевыделение и повышается производительность мельниц. Кроме того, происходит автоматическая сортировка частиц по крупности. Мелкие частицы переходят во взвешенное состояние и в виде пульпы (смеси частиц руды и воды) выносятся из мельницы.

Более крупные частицы, которые не могут находиться во взвешенном состоянии, остаются в мельнице и измельчаются дальше.

Технологические процессы дробления и измельчения почти всегда сочетаются с сортировкой и классификацией материала по крупности.

Разделение или сортировку материалов по классам крупности при помощи механических сит или решеток называют грохочением, а разделение в воде или воздухе с использованием разности скоростей падения частиц различной крупности – классификацией. Грохочением обычно разделяют материалы крупностью 1 – 3 мм, а более мелкие – классификацией.

Обогащение руд

Обогащение руд представляет собой процесс обработки полезных ископаемых, целью которого является повышение содержания полезного компонента и снижения содержания вр


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.112 с.