Гидромеханический расчет теплообменных аппаратов — КиберПедия 

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Гидромеханический расчет теплообменных аппаратов

2017-07-09 731
Гидромеханический расчет теплообменных аппаратов 0.00 из 5.00 0 оценок
Заказать работу

Между теплопередачей и потерей давления существует тесная физическая и экономическая связь. Чем больше скорости теплоносителей, тем выше коэффициент теплопередачи и тем компактнее для заданной тепловой производительности теплообменник, а следовательно, меньше капитальные затраты. Но при этом растет сопротивление потоку и возрастают эксплуатационные затраты. При проектировании теплообменных аппаратов необходимо решать совместно задачу теплообмена и гидравлического сопротивления и найти наивыгоднейшие характеристики.

Основной задачей гидромеханического расчета теплообменных аппаратов является определение потери давления теплоносителя при прохождении его через аппарат.

Опыты указывают на то, что даже в самых простых теплообменных аппаратах структура потока теплоносителя очень сложна. В силу этого в подавляющем большинстве случаев гидравлическое сопротивление в теплообменных аппаратах можно рассчитать только приближенно.

В зависимости от природы возникновения движения гидравлические сопротивления движению теплоносителей различают как сопротивления трения, которые обусловлены вязкостью жидкости и проявляются лишь в местах безотрывного течения, и местные сопротивления. Последние обуславливаются различными местными препятствиями движению потока (сужение и расширение канала, обтекание препятствия, повороты и др.). Сказанное справедливо для изотермического потока, однако если движение теплоносителя происходит в условиях теплообмена и аппарат сообщается с окружающей средой, то будут возникать дополнительные сопротивления, связанные с ускорением потока вследствие неизотермичности, и сопротивление с амотяги. Сопротивление самотяги возникает вследствие того, что вынужденному движению нагретой жидкости на нисходящих участках канала противодействует подъемная сила, направленная вверх.

(2.12)

где - сумма сопротивления трения на всех участках поверхности теплообмена (каналов, пучков труб, стенок и др.); - сумма потерь давления в местных сопротивлениях; - сумма потерь давления, обусловленная ускорением потока; - суммарная затрата давления на преодоление самотяги.

Потери давления на преодоление сил трения при течении несжимаемой жидкости в каналах на участке безотрывного движения определяют:

,

где l – полная длина канала; d – гидравлический диаметр; ρ и w – средняя плотность жидкости или газа в канале и средняя скорость; - коэффициент сопротивления трения.

Коэффициент сопротивления трения зависит от режима движения потока и поэтому при ламинарном и турбулентном течении определяется по-разному.

Местные сопротивления определяются по формуле:

,

где ξ – коэффициент местного сопротивления; - измеряется в Па.

Коэффициент местного сопротивления зависит от характера препятствия, которым вызываются указанные сопротивления.

Потеря давления, обусловленная ускорением потока вследствие изменения объема теплоносителя при постоянном сечении канала:

,

где w1, ρ1 и w2, ρ2 – скорость и плотность газа, соответственно во входном и выходном сечениях потока.

Если аппарат сообщается с окружающей средой, необходимо учитывать сопротивление самотяги:

,

где h – расстояние по вертикали между входом и выходом теплоносителя,
ρ и ρ0 – средние плотности теплоносителя и окружающей среды.

Знак «плюс» берется при движении теплоносителя сверху вниз, знак «минус» – при движении снизу вверх.

Гидравлическое сопротивление Δр, подсчитанное по формуле (2.12), предопределяет мощность, необходимую для перемещения теплоносителя через теплообменный аппарат.

Мощность N, Вт, на валу насоса или вентилятора определяется по формуле:

,

где V – объемный расход жидкости, м3/с; G – массовый расход жидкости, кг/с;
- полное сопротивление, Па; ρ – плотность жидкости или газа, кг/м3; - КПД насоса или вентилятора.



Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.