История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...
Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...
Топ:
Методика измерений сопротивления растеканию тока анодного заземления: Анодный заземлитель (анод) – проводник, погруженный в электролитическую среду (грунт, раствор электролита) и подключенный к положительному...
Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов...
Когда производится ограждение поезда, остановившегося на перегоне: Во всех случаях немедленно должно быть ограждено место препятствия для движения поездов на смежном пути двухпутного...
Интересное:
Мероприятия для защиты от морозного пучения грунтов: Инженерная защита от морозного (криогенного) пучения грунтов необходима для легких малоэтажных зданий и других сооружений...
Инженерная защита территорий, зданий и сооружений от опасных геологических процессов: Изучение оползневых явлений, оценка устойчивости склонов и проектирование противооползневых сооружений — актуальнейшие задачи, стоящие перед отечественными...
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Дисциплины:
2017-07-01 | 3350 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
План ответа
1. Определение конденсатора. 2. Обозначение. 3. Электроемкость конденсатора. 4. Электроемкость плоского конденсатора. 5. Соединение конденсаторов. 6. Применение конденсаторов.
Для накопления значительных количеств разноименных электрических зарядов применяются конденсаторы. Конденсатор — это система двух проводников (обкладок), разделенных слоем диэлектрика, толщина которого мала по сравнению с размерами проводников. Так, например, две плоские металлические пластины, расположенные параллельно и разделенные диэлектриком, образуют плоский конденсатор. Если пластинам плоского конденсатора сообщить равные по модулю заряды противоположного знака, то напряженность между пластинами будет в два раза больше, чем напряженность одной пластины. Вне пластин напряженность равна нулю.
Обозначаются конденсаторы на схемах так: — конденсатор постоянной емкости и
— конденсатор переменной емкости.
Электроемкостью конденсатора называют величину, равную отношению величины заряда одной из пластин к напряжению между ними. Электроемкость обозначается С.
По определению С = q/U. Единицей электроемкости является фарад (Ф). 1 фарад — это электроемкость такого конденсатора, напряжение между обкладками которого равно 1 вольту при сообщении обкладкам разноименных зарядов по 1 кулону.
Электроемкость плоского конденсатора находится по формуле:
С=εε0 •S/d
где ε0— электрическая постоянная, ε — диэлектрическая постоянная среды, S — площадь обкладки конденсатора, d — расстояние между обкладками (или толщина диэлектрика).
Если конденсаторы соединяются в батарею, то при параллельном соединении С0 =С1 + С2, (рис. ).
При последовательном соединении 1/C0= 1/C1 + 1/С2 (рис.).
В зависимости от типа диэлектрика конденсаторы бывают воздушные, бумажные, слюдяные.
Конденсаторы применяются для накопления электроэнергии и использования ее при быстром разряде (фотовспышка), для разделения цепей постоянного и переменного токов, в выпрямителях, колебательных контурах и других радиоэлектронных устройствах.
Билет № 14
Силы и энергия межмолекулярного взаимодействия. Строение газообразных, жидких и твёрдых тел. Опыт Штерна.
Межмолекулярные силы – силы взаимодействия между молекулами. Имеют электрическую природу, взаимодействие положительных и отрицательных зарядов.
F
Силы отталкивания
0 do r
Сила молекулярного взаимодействия
Силы притяжения
|
График зависимости межмолекулярных сил от расстояния между молекулами
· do- поперечник молекулы, r- расстояние между центрами молекул.
· Если r = do , сила отталкивания равна силе притяжения. Сила взаимодействия молекул равна нулю.
· Если r<do сила отталкивания больше силы притяжения. Молекулы отталкиваются друг от друга.
· Если r >do сила отталкивания меньше силы притяжения. Молекулы притягиваются друг другу.
Энергия молекул.
Молекулы находятся в состоянии хаотического движения, молекулы взаимодействуют друг с другом, следовательно, они обладают кинетической и потенциальной энергией: .
· В газообразном состоянии потенциальная энергия взаимодействия молекул пренебрежимо мала по сравнению с кинетической. Поэтому газы не имеют постоянной формы и объема, заполняют весь предоставленный им объем.
· В жидкостях величина потенциальной энергии приблизительно равна кинетической энергии. Поэтому в жидкости молекулы могут скачкообразно перемещаться относительно друг друга. Время “оседлой” жизни 10-8c. C ростом температуры это время уменьшается. Жидкость имеет свойство текучести: сохраняя объем легко меняет форму, принимая форму сосуда.
В твердых телах величина потенциальной энергии взаимодействия молекул значительно больше кинетической энергии. Поэтому в твердых телах молекулы не могут свободно перемещаться, образуют кристаллическую решетку. Твердые тела сохраняют форму и объем. В кристаллической решетке молекулы обладают наименьшей потенциальной энергией .
Опыт Штерна
О. Штерн, воспользовавшись методом молекулярных пучков, изобретенным французским физиком Луи Дюнойе (1911г.) измерил скорость газовых молекул и на опыте подтвердил полученное Д. К. Максвеллом распределение молекул газа по скоростям. Результаты опыта Штерна подтвердили правильность оценки средней скорости атомов, которая вытекает из распределения Максвелла.
По графику можно было определить смещение для середины изображения щели и, соответственно, вычислить среднюю скорость движения атомов.
|
При Т2<Т1 максимум кривой распределения смещается в область больших значений скоростей.
· Вначале была высказана гипотеза о том, что молекулы движутся с разными скоростями.
· Эти скорости связаны с температурой и существует определенный закон распределения молекул по скоростям, что следовало из наблюдений, в частности, броуновского движения.
· Затем Д. К. Максвелл теоретически получил закон распределения молекул по скоростям, который носит название распределения Максвелла.
Закон получил экспериментальное подтверждение в опытах Максвелла.
Билет №15
Идеальный газ. Параметры состояния идеального газа
Идеальным газом называется газ, при рассмотрении свойств которого соблюдаются следующие условия:
а) соударения молекул такого газа происходят как соударения упругих шаров, размеры которых пренебрежимо малы;
б) от столкновения до столкновения молекулы движутся равномерно и прямолинейно;
в) пренебрегают силами взаимодействия между молекулами.
Реальные газы при комнатной температуре и нормальном давлении ведут себя как идеальные газы. Идеальными газами можно считать такие газы как гелий, водород, свойства которых уже при обычных условиях отвечают закономерностям идеального газа.
Состояние некоторой массы идеального газа будет определяться значениями трех параметров: P, V, T. Эти величины, характеризующие состояние газа, называются параметрами состояния. Эти параметры закономерно связаны друг с другом, так что изменение одного из них влечет за собой изменение другого. Эта связь аналитически может быть задана в виде функции:
Соотношение, дающее связь между параметрами какого-либо тела, называется уравнением состояния. Следовательно, данное соотношение является уравнением состояния идеального газа.
1) Давление (P). В газе давление возникает в результате хаотического движения молекул, в результате которого молекулы сталкиваются друг с другом и со стенками сосуда. Давление – это физическая величина, численно равная силе, действующей на единицу площади поверхности, нормальную к ней. Если сила равномерно распределена по поверхности, то . В системе СИ давление измеряется в 1Па=1Н/м2.
2) Температура (Т).
Температура тела – это термодинамическая величина, характеризующая состояние термодинамического равновесия макроскопической системы.
Температура одинакова для всех частей изолированной системы, находящейся в состоянии термодинамического равновесия. Т.е., если соприкасающиеся тела находятся в состоянии теплового равновесия, т.е. не обмениваются энергией путем теплопередачи, то этим телам приписывается одинаковая температура. Если при установлении теплового контакта между телами одно из них передает энергию другому посредством теплопередачи, то первому телу приписывается большая температура, чем второму. Любое из свойств тела (температурный признак), зависящее от температуры может быть использовано для количественного определения (измерения) температуры.
|
Билет № 16
Внутренняя энергия. Теплоёмкость. Удельная теплоёмкость. Первое начало термодинамики. Адиабатный процесс.
1. Любое тело (газ, жидкость или твердое) обладает энергией, даже если кинетическая и потенциальные энергии самого тела нулевые. То есть тело не имеет скорости и находится на Земле. Эта энергия называется внутренней, обусловлена она движением и взаимодействием частиц, из которых состоит тело.
Внутренняя энергия состоит из кинетической и потенциальной энергии частиц поступательного и колебательного движений, из энергии электронных оболочек атомов, из внутриядерной энергии и энергии электромагнитного излучения.
Внутренняя энергия зависит от температуры. Если изменяется температура, значит, изменяется внутренняя энергия.
2. Количество теплоты - это энергия, которую получает или отдает система в процессе теплообмена. Обозначается символом Q, измеряется, как любая энергия, в Джоулях. В результате различных процессов теплообмена энергия, которая передается, определяется по-своему.
Нагревание и охлаждение. Этот процесс характеризуется изменением температуры системы. Количество теплоты определяется по формуле
Удельная теплоемкость вещества с измеряется количеством теплоты, которое необходимо для нагревания единицы массы данного вещества на 1К. Для нагревания 1кг стекла или 1кг воды требуется различное количество энергии. Удельная теплоемкость - известная, уже вычисленная для всех веществ величина, значение смотреть в физических таблицах.
Теплоемкость вещества С - это количество теплоты, которое необходимо для нагревания тела без учета его массы на 1К.
3. Закон сохранения энергии управляет всеми явлениями природы и связывает их воедино. Он всегда выполняется абсолютно точно, неизвестно ни одного случая, когда бы этот великий закон не выполнялся.
Этот закон был открыт в середине XIX в. немецким ученым, врачом по образованию Р. Майером (1814—1878), английским ученым Д. Джоулем (1818—1889) и получил наиболее точную формулировку в трудах немецкого ученого Г. Гельмгольца (1821 — 1894).
Закон сохранения и превращения энергии, распространенный на тепловые явления, носит название первого закона термодинамики.
В термодинамике рассматриваются тела, положение центра тяжести которых практически не меняется. Механическая энергия таких тел остается постоянной, изменяться может лишь внутренняя энергия каждого тела.
Изменение внутренней энергии системы при переходе ее из одного состояния в другое равно сумме работы внешних сил и количества теплоты, переданного системе:
|
∆ U=A+Q.
Часто вместо работы А внешних тел над системой рассматривают работу А' системы над внешними телами. Учитывая, что А'=-А, первый закон термодинамики можно записать так:
Q=∆U+A′
Количество теплоты, переданное системе, идет на изменение ее внутренней энергии и на совершение системой работы над внешними телами.
4. Процесс в теплоизолированной системе называют адиабатным.
При адиабатном процессе Q=0 и согласно уравнению изменение внутренней энергии происходит только за счет совершения работы:
∆U=A.
Конечно, нельзя окружить систему оболочкой, абсолютно не допускающей теплопередачу. Но в ряде случаев можно считать реальные процессы очень близкими к адиабатным. Для этого они должны протекать достаточно быстро, так, чтобы за время процесса не произошло заметного теплообмена между системой и окружающими телами.
Билет № 17
|
|
Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...
Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьшения длины пробега и улучшения маневрирования ВС при...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!