Силовые кабели на высокое постоянное напряжение — КиберПедия


Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Силовые кабели на высокое постоянное напряжение



Для кабелей постоянного тока Iз = 0, что и делает их привлекательным и часто единственно возможным техническим решением для передачи энергии на большие расстояния, в первую очередь — при пересечении больших водных пространств. На сегодняшний день единственной изоляцией, успешно применяемой для данных изделий, является традиционная, т.е. бумажная, пропитанная вязким составом или маслом под давлением. Попытки использовать для кабелей постоянного тока пластмассовую изоляцию до сих пор успешными не были. Причина заключается в том, что при действии постоянного напряжения на пластмассовую изоляцию в последней под действием объёмных зарядов формируется крайне неблагоприятное распределение электрического поля. Напряжённости оказываются настолько большими, что даже при умеренных значениях напряжений в изоляции быстро развивается электрический пробой, т.е. электрическая прочность пластмассовой изоляции при постоянном напряжении оказывается низкой. Длительно допустимые рабочие напряжённости электрического поля для кабелей постоянного тока значительно выше, чем для кабелей переменного тока, и составляют 30 кВ/мм для кабелей с вязкой пропиткой и 40 кВ/мм для МНК. Помимо фактического отсутствия ограничений по длине передачи кабели постоянного тока имеют целый ряд преимуществ по сравнению с кабелями переменного тока. Это более высокая надёжность, обусловленная отсутствием некоторых механизмов старения, присущих изоляции, работающей при переменном напряжении, возможность реверса потока мощности и передачи очень больших мощностей. Указанные преимущества весьма существенны для России, которая отличается большими пространствами, значительной неравномерностью размещения источников и потребителей электроэнергии, а также большим экспортом энергии. Несмотря на все перечисленные преимущества, широкое применение передачи постоянного тока сдерживается тем фактором, что сейчас производство и применение электроэнергии основано на системах и оборудовании переменного напряжения. Это требует оснащения каждой ЛЭП постоянного тока преобразовательной и инверторной подстанциями, что резко удорожает передачу. Поэтому кабели постоянного тока используются практически лишь там, где без них нельзя обойтись, в первую очередь в тех случаях, когда ЛЭП должна пересекать большие водные пространства.

Арматура силовых кабелей

В настоящее время в энергосистемах применяются различные виды кабельной арматуры. Из них наиболее известны концевые и соединительные муфты, разновидностями которых для концевых муфт являются муфты кабельных вводов, а для соединительных муфт — переходные и стопорные муфты. Основные конструкции муфт приведены в таблице 9.2. Многообразие конструктивных форм арматуры и особенностей ее монтажа определяются типами кабелей, для которых она используется и условиями эксплуатации. Конструкция соединительной муфты для кабелей на напряжение 110 кВ с изоляцией из сшитого ПЭ приведена на рисунке 9.8, а конструкция концевой муфты для кабеля на напряжение 500 кВ с пропитанной бумажной изоляцией - на рисунке 9.9.



Таблица 9. 2 Основные типы кабельной арматуры

Основные типы кабельной арматуры
Таблица 9.2 Вид кабельной арматуры Область применения Основные эксплуата­ционные характеристики Конструктив­ные элементы Техноло­гические особенности монтажа Примечание
Концевые муфты (КМ) Для соединения кабеля с элементами ЛЭП Рабочие напряжения 1,6, 10,110,220, 500 кВ; климати­ческое исполнение У и ХЛ (от -60о до + 40°С) Фарфоровый изолятор, заполненный изоляци­онной жидкостью, усиливающая изоляция, токовый вывод Намотка из рулонов или лент, прессованные соединения жилы и наконечника, вакуумирование В России могут быть изготовлены для всех видов кабелей
Кабельные вводы в элегазовые распредели­тельные устройства (РУ)и трансформаторы Для закрытого соединения кабеля с шиной элегазового РУ или обмоткой трансфор­матора В элегазовое РУ на рабочее напряжение кабелей 110 и 220 кВ, климати­ческое исполнение У, но при темпе­ратуре не ниже -25°С, в трансфор­маторы на рабочее напряжение 110,220 и 500 кВ Металли­ческий кожух, эпоксидный или фарфоровый изолятор, заполненный изоляци­онной жидкостью, усиливающая изоляция, токовый вывод или токовая перемычка Намотка из рулонов и/или лент, прессованные соединения жилы и наконеч­ника, вакуумирование и вулкани­зация изоляции для вводов кабелей с пластмассовой изоляцией В настоящее время для кабелей с пласт­массовой изоляцией в России могут быть изготов­лены вводы только на напряжение 110 кВ
Соедини­тельные муфты (СМ) Для соединения отдельных строительных длин кабелей Рабочие напряжения 1,6, 10, 110, 220, 500 кВ, установка в земле или подземных сооружениях при температуре окружающей среды -10°С Металли­ческий кожух или термоуса­живаемая трубка, усиливающая изоляция, соединительная гильза Прессованные, сварные или паяные соединения жил, намотка из рулонов или лент, вакууми­рование и вулкани­зация изоляции для СМ кабелей с пластмассовой изоляцией В настоящее время для кабелей с пласт­массовой изоляцией СМ в России могут быть изготов­лены только на напряжение 110 кВ
Стопорные и переходные муфты Для соединения двух кабелей, в том числе с разной изоляцией и с разделением жидких изоляци­онных сред, заполняющих кабели Рабочее напряжение 110 кВ, климатическое исполнение УХЛ 3 при температуре окружающей среды -10°С Металли­ческий кожух, эпоксидный изолятор, усиливающая изоляция, токовые выводы, электроды, регулиру­ющие напряжённость электрического поля Намотка из рулонов и/или лент, прессованные соединения наконечников, вулкани­зация изоляции для кабелей с пласт­массовой изоляцией, вакууми­рование Переходные муфты широко используются при реконст­рукции кабельных линий 110 кВ в г. Москве

 



 

Рис. 9.8 Конструкция соединительной муфты для кабеля с изоляцией из сшитого полиэтилена на напряжение 110 кВ:

1 – оболочка кабеля; 2 - герметик; 3- восстанавливаемый экран; 4 – металлическая восстанавливаемая сетка; 5 – электроизоляционная лента; 6 – термоусаживаемая трубка; 7 – экран кабеля; 8 – экран соединительной муфты; 9 – изоляция соединительной муфты

Рис. 10.9 Конструкция концевой муфты для маслонаполненного кабеля на напряжение 500 кВ:

1 – экран; 2 – изолятор из высокопрочного фарфора; 3 – промежуточные экраны; 4 – опорная плита

Необходимость вывода жилы из кабеля для присоединения к токовому наконечнику в концевой муфте или для соединения жил в соединительной муфте приводит к неоднородности электрического поля в изоляции муфты и появлению продольной составляющей напряжённости электрического поля. Поэтому в дополнительной (усиливающей) изоляции применяются различные способы принудительного регулирования электрического поля, обеспечивающие необходимый уровень напряжённости электрического поля в изоляции:

  1. с помощью наружных и внутренних экранов и электродов;
  2. с помощью конденсаторных обкладок или конденсаторных элементов.

Потребители по экономическим или другим соображениям не всегда имеют возможность быстрой и полной замены всей длины существующих кабельных линий на основе маслонаполненного кабеля на современные кабели с изоляцией из сшитого ПЭ. Поэтому энергосистемы зачастую вынуждены менять маслонаполненный кабель по участкам (по строительным длинам). В этой связи возникает задача соединения кабелей с разнородной электрической изоляцией, которая решается путём использования соединительных переходных муфт.






Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...





© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.009 с.