No 63 Гемопоэз. Понятие о стволовых и полустволовых клетках, дифферонах. — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

No 63 Гемопоэз. Понятие о стволовых и полустволовых клетках, дифферонах.

2022-10-05 37
No 63 Гемопоэз. Понятие о стволовых и полустволовых клетках, дифферонах. 0.00 из 5.00 0 оценок
Заказать работу

Красный костный мозг. Заполняет губчатое вещество плоских и трубчатых костей. Ретикулярные клетки. Выполняют механическую функцию, секретирует преколлаген, проэластин и учувствует в создании кроветворного микроокружения, выделяют ростовые факторы. Остеогенные клетки. Это стволовые клетки опорных тканей, остеобласты и их предшественники. Способны вырабатывать ростовые факторы. Адипоциты. Адвентициальные клетки сопровождают кровеносные сосуды и покрывают наружную поверхность синусоидных капилляров. Эндотелиальные клетки. Принимают участие в организации стромы и процессов кроветворения. Эндотелиоциты способны к сократительным движениям, способствуют выталкиванию клеток крови в синусоидные капилляры. Они выделяют колониестимулирующие факторы и фибронектин, обеспечивающий прикрепление клеток друг к другу и субстрату. Макрофаги. Богаты лизосомами и фагосомами. Некоторые секретируют БАВ. Макрофаги проникают через стенку синусов, улавливают из кровотока железосодержащее соединение и передают его развивающимся эритроидным клеткам для построения геминовой части гемоглобина. Межклеточное вещество содержит коллаген, гликопротеины, протеогликаны. Гемопоэтические клетки. Гранулоцитопоэтические клетки образуют островки по периферии костномозговой полости. Незрелые клетки окружены протеогликанов, в процессе созревания они депонируются в красном костном мозге. Мегакариобласты и мегакариоциты. Располагаются в тесном контакте с синусами так, что периферическая часть цитоплазмы из проникает в просвет сосуда через поры. Отделение фрагментов цитоплазмы в виде тромбоцитов происходит непосредственно в кровяное русло. Среди островков клеток миелоидного ряда встречаются небольшие скопления костномозговых лимфоцитов и моноцитов, которые окружают кровеносный сосуд. Желтый костный мозг. Находится в диафизах трубчатых костей. В его составе жировые клетки. Васкуляризация. Снабжается кровью по сосудам, проникающим через надкостницу в специальные отверстия в компактном веществе кости. Войдя в костный мозг, артерии разветвляются на восходящую и нисходящую ветви, от которых радиально отходят артериолы. Из синусов кровь собирается в центральную венулу. К базальной мембране снаружи прилежат адвентициальные клетки, которые не образуют сплошного слоя, что создает благоприятные условия для миграции клеток костного мозга в кровь. По мере контакта с костным мозгом кровь обогащается минеральными солями и регуляторами кроветворения. Кровеносные сосуды составляют 50% массы костного мозга. Артерии имеют среднюю и адвентициальную оболочку, многочисленные тонкостенные вены. Капилляры выстланы эндотелиоцитами, лежащими на прерывистой базальной мембране. Иннервация. Участвуют нервы сосудистых сплетений, мышц, проводники к костному мозгу. Проникают в мозг через костные каналы. Далее покидают их и продолжаются как самостоятельные веточки. Они ветвятся на тонкие волоконца, которые либо вступают в контакт с костномозговыми сосудами и оканчиваются в их стенке, либо заканчиваются свободно среди клеток костного мозга. Возрастные изменения. Красный костный мозг в детстве заполняет эпифизы и диафизы трубчатых костей и находится в губчатом веществе плоских костей. Примерно в 12-18 лет красный замещается на желтый в диафизах. В старческом костный мозг приобретает слизистую консистенцию и называется желатинозным костным мозгом. Регенерация. Источником образования являются стволовые клетки, находящиеся в тесном взаимодействии с ретикулярной стромальной тканью. Скорость регенерации костного мозга связана с микроокружением и специальными ростстимулирующимим факторами гемопоэза.
Фагоцитоз. Фаголизосома. Накопление антигенов. Появление антигенов на мембране макрофагов. Активация пролиферации и дифференцировки Т- и В-лимфоцитов. Хранение информации об антигене.

Роль тучных клеток: При первичном и особенно при вторичном введении антигенов наблюдается увелечение числа тучных клеток, их контакт с макрофагами и массовая денатурация. Высказывается предположение, что денатурация обусловлена соединением антигена с антителами, фиксированными на цитолемме. При этом выделяются содержащиеся в гранулах БАВ (гистамин, серотонин, гепарин), которые могут оказывать неспецифическое стимулирующее влияние на процессы пролиферации и дифференцировки иммунокомпитентных клеток Т и В лимфоцитов.

No 64 Строение красного костного мозга Характеристика постэмбронального кроветорения в красном костном мозге. Взаимодействие стромальиых и гемопоэтических элементов.

No 65 Органы кроветворения. Тимус. Строение и функциональное значение. Характеристика постэмбрионального кроветворения элементов. Эндокринная функция тимуса. Понятие о возрастной и акцидентальной эволюции тимуса. Тимус, как центральный орган иммунопоэза, его роль в образовании Т- лимфоцитов. Виды Т-лимфоцитов, их антигеннезависимая и антигензависимая дифференцировка.

Снаружи покрыта соединительнотканной капсулой, от нее внутрь отходят перегородки, разделяющие железу на дольки. В каждой дольке различают корковое и мозговое вещество. В основе органа лежит эпителиальная ткань, состоящая из эпителиоретикулоцитов. Секреторные клетки коры и мозгового вещества. Содержат вакуоли, тимулин, тимопоэтин. В субкапсулярной зоне расположены лимфоциты. Вспомогательные клетки: макрофаги и дендритные клетки. Они выделяют ростовые факторы, влияющие на дифференцировку Т-лимфоцитов. Корковое вещество. Содержит Т-лимфоциты. В подкапсулярной зоне находятся лимфобласты (предшественники Т-лимфоцитов). Они под влиянием тимозина, выделяемого эпителиоретикулоцитов, пролиферируют. Новые генерации лимфоцитов появляются каждые 6-9 часов. Т-лимфоциты мигрируют в кровоток, не входя в мозговое вещество. Они отличаются по составу рецепторов от Т-лимфоцитов мозгового вещества. С током крови они попадают в периферические органы лимфопоэза (лимфатические узлы и селезенку), где созревают до киллеров, хелперов, супрессоров. Лимфоциты, имеющие циторецепторы к собственным антигенам погибают в тимусе, при попадании их в кровоток развивается аутоиммунная реакция. Клетки коркового вещества отделены от крови гематотимусным барьером, предохраняющим дифференцирующиеся лимфоциты от избытка антигенов. В его состав входят эндотелиальные клетки гемокапилляров с базальной мембраной, перикапиллярное пространство с единичными лимфоцитами, макрофаги и межклеточным веществом, эпителиоретикулоциты с базальной мембраной. Барьер обладает изберательной проницаемостью по отношению к антигену. При нарушении обнаруживаются единичные плазматические клетки, зернистые лейкоциты и тучные клетки. Мозговое вещество. Это рециркулирующий пул Т-лимфоцитов, которые могут выходить в кровоток через посткапиллярные венулы. В средней части мозгового вещества расположены слоистые эпителиальные тельца. Они образованы наслоенными эпителиоретикулоцитами, цитоплазма которых содержит крупные вакуоли, гранулы кератина и пучки фибрилл. Количество этих телец увеличивается к периоду половой зрелости, затем уменьшается. Функция не установлена. Васкуляризация. Внутри органа артерии ветвятся на междольковые и внутридольковые, которые образуют дуговые ветви. Капилляры окружены непрерывной базальной мембраной и слоем эпителиальных клеток, отграничивающим перикапиллярное пространство. Оно заполнено тканевой жидкостью, встречаются лимфоциты и макрофаги. Большая часть переходит в подкапсулярные венулы. Меньшая часть идет в мозговое вещество и на границе с корковым переходит в посткапиллярные венулы, отличающиеся высоким призматическим эпителием. Лимфатическая система представлена глубокой и поверхностной выносящей сетью капилляров. Паренхиматозная капиллярная сеть особенно богата в корковом веществе, а в мозговом капилляры обнаружены вокруг эпителиальных слоистых телец. Лимфатические капилляры собираются в сосуды междольковых перегородок, идущие вдоль кровеносных сосудов. Возрастная и акцидентальная инволюция тимуса. Тимус достигает максимального развития в раннем возрасте. В период с 3 до 20 лет наблюдается стабилизация ее массы. В более позднее время происходит обратное развитие тимуса. Это сопровождается уменьшением количества лимфоцитов, особенно в корковом веществе, появлением липидных включений в соединительнотканных клетках и развитием жировой ткани. Акцидентальная инволюция может происходить в связи с возжействием на организм различных раздражителей (травма, интоксикация, инфекция, голодание). При стресс-реакции происходит выброс Т-лимфоцитов в кровь и массовая гибель лимфоцитов в самом органе. В связи с этим становится менее заметная граница коркового и мозгового вещества. Кроме лимфоцитолиза наблюдается фагоцитоз макрофагами внешне не измененных лимфоцитов. Одновременно с гибелью лимфоцитов происходит разрастание эпителиоретикулоцитов, они набухают, в цитоплазме появляются секретоподобные капли. Иногда они скапливаются между клетками, образуя подобие фолликулов. Тимус вовлекается в стресс-реакцию вместе с надпочечниками. Увеличение количества глюкортикоидов приводит к быстрой и акцидентальной инволюции. Тимус играет роль в формировании тимусзависимых лимфоцитов, селекции лимфоцитов, регуляции пролиферации и дифференцировки в периферических кроветворных органах благодаря тимозину. Также выделяет: инсулинподобный фактор (понижает содержание сахара в крови); кальцитонинподобный (снижает концетрацию кальция в крови) и фактор роста.

No 66 Селезёнка. Строение и функциональное значение. Особенности кровоснабжения. Постэмбриональное кроветворение в селезёнке. Т- и В-зоны

СЕЛЕЗЕНКА – важный лимфопоэтический орган. ФУНКЦИИ СЕЛЕЗЕНКИ: пролиферация (размножение) Т- и В-лимфоцитов; антигензависимая дифференцировка Т- и В-лимфоцитов; эндокринная (выработка веществ, угнетающих эритропоэз); Защитная: депонирование крови; разрушение эритроцитов и тромбоцитов. Строение. Селезенка человека покрыта соединительнотканной капсулой и брюшиной. Толщина капсулы неодинакова в различных участках селезенки. Наиболее толстая капсула в воротах селезенки, через которые проходят кровеносные и лимфатические сосуды. Капсула состоит из плотной волокнистой соединительной ткани, содержащей фибробласты и многочисленные коллагеновые и эластические волокна. Между волокнами залегает небольшое количество гладких мышечных клеток. Внутрь от капсулы отходят перекладины — трабекулы селезенки, которые в глубоких частях органа анастомозируют между собой. Капсула и трабекулы в селезенке человека занимают примерно 5—7 % от общего объема органа и составляют его опорно-сократительный аппарат. В трабекулах селезенки человека сравнительно немного гладких мышечных клеток. Эластические волокна в трабекулах более многочисленны, чем в капсуле. В селезенке различают белую пульпу и красную пульпу. В основе пульпы селезенки лежит ретикулярная ткань, образующая ее строму. Строма органа представлена ретикулярными клетками и ретикулярными волокнами, содержащими коллаген III и IV типов. Белая пульпа селезенки. Представляет собой совокупность лимфоидной ткани, расположенной в адвентиции ее артерий в виде шаровидных скоплений, или узелков, и лимфатических периартериальных влагалищ. В целом они составляют примерно '/5 органа. Лимфатические узелки селезенки 0,3—0,5 мм в диаметре представляют собой скопления Т- и В-лимфоцитов, плазмоцитов и макрофагов в петлях ретикулярной ткани (дендритных клеток), окруженные капсулой из уплощенных ретикулярных клеток. Через лимфатический узелок проходит, обычно эксцентрично, центральная артерия, от которой отходят радиально капилляры. В лимфатических узелках различают 4 нечетко разграниченные зоны: периартериальную, центр размножения, мантийную и краевую, или маргинальную, зону. Периартериальная зона занимает небольшой участок узелка около центральной артерии и образована главным образом из Т-лимфоцитов, попадающих сюда через гемокапилляры, отходящие от артерии лимфатического узелка, и интердигитирующих клеток. Субмикроскопические отростки этих клеток вытягиваются на значительное расстояние между окружающими их лимфоцитами и плотно с ними контактируют. Полагают, что этиклетки адсорбируют антигены, поступающие сюда с кровотоком, и пере­дают Т-лимфоцитам информацию о состоянии микроокружения, стимули­руя их бласттрансформацию и пролиферацию. В течение 2—3 сут активиро­ванные Т-лимфоциты остаются в этой зоне и размножаются. В дальнейшем они мигрируют из периартериальной зоны в синусы краевой зоны через ге-мокапилляры. Тем же путем попадают в селезенку и В-лимфоциты. Причи­на заселения Т- и В-лимфоцитами «своих» зон недостаточно ясна. В функ­циональном отношении периартериальная зона является аналогом паракортикальной тимусзависимой зоны лимфатических узлов. Центр размножения, или герминативный центр узелка, со­стоит из ретикулярных клеток и пролиферирующих В-лимфобластов, диф­ференцирующихся антителообразующих плазматических клеток. Кроме того, здесь нередко можно обнаружить скопления макрофагов с фагоцитирован­ными лимфоцитами или их фрагментами в виде хромофильных телец и ден­дритные клетки. В этих случаях центральная часть узелка выглядит светлой («реактивный центр»). На границе со следующей, мантийной зоной обнаруживаются диффе­ренцирующиеся плазмоциты. В функциональном отношении эта область идентична герминативным центрам лимфоидных узелков в лимфатических узлах. Мантийная зона окружает периартериальную зону и центр размно­жения, состоит главным образом из плотно расположенных малых В-лим­фоцитов и небольшого количества Т-лимфоцитов, а также содержитjina3-моциты и макрофаги. Прилегая плотно друг к другу, клетки образуют как бы корону, расслоенную циркулярно направленными толстыми ретикуляр­ными волокнами. Краевая, или маргинальная, зона узелков селезенки представля­ет собой переходную область между белой и красной пульпой шириной около 100 мкм. Она состоит преимущественно из Т- и В-лимфоцитов и еди­ничных макрофагов, окружена краевыми, или маргинальными, синусоидными сосудами с щелевидными порами в стенке. Периартериальные лимфатические влагалищапредставляют собою вытянутые по ходу пульпарной артерии скопле­ния В-лимфоцитов, плазматических клеток, а по периферии влагалища — малых Т-лймфоцитов. Антигены, приносимые кровью, задерживаются в маргинальной зоне и крас­ной пульпе. Далее они переносятся макрофагами на поверхность антигенпредставляющих клеток (дендритных и интердигитирующих) белой пульпы. Лимфоциты из кровотока оседают в основном в периартериальной зоне (Т-лимфоциты) и в лимфоидных узелках (В-лимфоциты). При первичном иммунном ответе продуцирующие антитела клетки появляются сначала в эллипсоидных муфтах, а затем в красной пульпе. При вторичном ответе формируются центры размножения, где образуются клоны В-лимфоцитов и клетки памяти. Дифференцировка В-лимфоцитов в плазмоциты завершается в красной пульпе. Тимуснезависимые антигены вызывают акти­вацию В-лимфоцитов маргинальных зон. Независимо от вида антигена и способа его введения накопление лимфоцитов в селезенке происходит не столько за счет их пролиферации, сколько за счет притока уже стимулированных антигеном клеток. Красная пульпа селезенки. С остоит из ретикулярной ткани с расположен­ными на ней клеточными элементами крови, придающими ей красный цвет, и многочисленными кровеносными сосудами, главным образом синусоидного типа.

Часть красной пульпы, расположенная между синусами, называется селезеночными, или пульпарными, тяжами Здесь по ана­логии с мозговыми тяжами лимфатических узлов заканчивают свою дифференцировку и секретируют антитела плазмоциты, предшественники ко­торых перемещаются сюда из белой пульпы. Строма заполнена В-, Т-лим-фоцитами. В этих местах могут формироваться новые узелки. В красной пуль­пе задерживаются моноциты, которые дифференцируются в макрофаги. Селезенка считается «кладбищем эритроцитов» в связи с тем, что об­ладает способностью понижать осмотическую устойчивость старых или по­врежденных эритроцитов. Это приводит эритроциты к гибели. Такие эрит­роциты поглощаются макрофагами красной пульпы. В результате расщепле­ния гемоглобина поглощенных макрофагами эритроцитов образуются и выделяются в кровоток билирубин и содержащий железо трансферрин. Би­лирубин переносится в печень, где войдет в состав желчи. Трансферрин из кровотока захватывается макрофагами костного мозга, которые снабжают железом вновь развивающиеся эритроциты. В селезенке депонируется кровь и скапливаются тромбоциты. Старые тромбоциты подвергаются здесь разрушению. Васкуляризация. В ворота селезенки входит селезеночная артерия, кото­рая разветвляется на трабекулярные артерии. Наружная оболочка артерий рыхло соединена с тканью трабекул (см. рис.216). Средняя оболочка четко заметна на любом срезе трабекулярной артерии благодаря мышечным пуч­кам, идущим в составе ее стенки по спирали. От трабекулярных артерий отходят пульпарные артерии. В наружной оболочке этих артерий много спи­рально расположенных эластических волокон, которые обеспечивают про­дольное растяжение и сокращение сосудов. Недалеко от трабекул в адвен-тиции пульпарных артерий появляются периартериальные лимфатические влагалища и лимфатические узелки. Центральная артерия, проходящая через узелок отдает несколько гемокапилляров и, выйдя из узелка, разветвляется в виде кисточки на несколько кисточковых артериол. Дистальный конец этой артериолы продолжается в эллипсоидную артериолу, снабженную муф­той из ретикулярных клеток и волокон. Это своеобразный Тсрик-ктер на артериоле. У человека эти гильзы развиты очень слабо. В эндотелии гильзовых или эллипсоидных артериол обнаружены сократительные филаменты. Далее следуют короткие артериальные гемокапилляры. Большая часть капилляров красной пульпы впадает в венозные синусы (закрытое кро­вообращение), однако некоторые могут непосредственно открываться в ретикулярную ткань (открытое кровообращение). Закрытое кровообраще­ние — путь быстрой циркуляции и оксигенации тканей. Открытое кровооб­ращение — более медленное, обеспечивающее контакт форменных элемен­тов крови с макрофагами. Синусы являются началом венозной системы селезенки. Их диаметр ко­леблется от 12 до 40 мкм в зависимости от кровенаполнения. При расшире­нии совокупность всех синусов занимает большую часть селезенки. Эндотелиоциты синусов расположены на прерывистой базальной мембране. По поверхности стенки синусов в виде колец залегают ретикуляр­ные волокна. Синусы не имеют перицитов. Во входе в синусы и в месте их перехода в вены имеются подобия мышечных сфинктеров. При открытых артериальных и венозных сфинктерах кровь свободно проходит по синусам в вены. Сокращение венозного сфинктера приводит к накоплению крови в синусе. Плазма крови проникает сквозь стенку синуса, что способствует концентрации в нем клеточных элементов. В случае закрытия венозного и артериального сфинктеров кровь депонируется в селезенке. При растяжении синусов между эндотелиальными клетками образуются щели, через кото­рые кровь может проходить в ретикулярную строму. Расслабление артери­ального и венозного сфинктеров, а также сокращение гладких мышечных клеток капсулы и трабекул ведет к опорожнению синусов и выходу крови в венозное русло. Отток венозной крови из пульпы селезенки совершается по системе вен. Трабекулярные вены лишены собственного мышечного слоя; средняя оболоч­ка в них выражена очень слабо. Наружная оболочка вен плотно сращена с соединительной тканью трабекул. Такое строение вен обусловливает их зияние и облегчает выброс крови при сокращении гладких мышечных клеток селезенки. Между артериями и венами в капсуле селезенки, а также между пульпарными артериями встречаются анастомозы. Иннервация. В селезенке имеются чувствительные нервные волокна (дендриты нейронов спинномозговых узлов) и постганглионарные симпатичес­кие нервные волокна из узлов солнечного сплетения. Миелиновые и безмиелиновые (адренергические) нервные волокна обнаружены в капсуле, тра­бекулах и сплетениях вокруг трабекулярных сосудов и артерий белой пуль­пы, а также в синусах селезенки. Нервные окончания в виде свободных концевых веточек располагаются в соединительной ткани, на гладких мы­шечных клетках трабекул и сосудов, в ретикулярной строме селезенки. Возрастные изменения. В старческом возрасте в селезенке происходит атрофия белой и красной пульпы, вследствие чего ее трабекулярный аппа­рат вырисовывается более четко. Количество лимфатических узелков в селе­зенке и размеры их центров постепенно уменьшаются. Ретикулярные волок­на белой и красной пульпы грубеют и становятся более извилистыми. У лиц старческого возраста наблюдаются узловатые утолщения волокон. Количество макрофагов и лимфоцитов в пульпе уменьшается, а число зернистых лейкоцитов и тучных клеток возрастает. У детей и лиц старческого возраста обнаруживаются гигантские многоядерные клетки — мегакариоциты. Количество железосодержащего пигмента, отражающее процесс ги­бели эритроцитов, с возрастом в пульпе увеличивается, но располагается он главным образом внеклеточно. Регенерация. Физиологическое обновление лимфоидных и стромальных клеток происходит в пределах самостоятельных стволовых дифферонов. Эк­спериментальные исследования на животных показали возможность восста­новления селезенки после удаления 80—90 % ее объема (репаративная ре­генерация). Однако полного восстановления формы и размеров органа при этом, как правило, не наблюдается.

No 67 Строение и функциональное значение лимфатических узлов. Их участие в пролиферации, дифференцировке и созревании Т-и В-лимфоцитов.
Основными клетками, осуществляющими иммунные реакции, явля­ются Т- и В-лимфоциты (и их производные плазмоциты), макрофаги, а также ряд взаимодействующих с ними клеток (тучные клетки, эозинофилы и др.).

Лимфоциты. Популяция лимфоцитов функционально неоднородна. Различают три основных вида лимфоцитов: Т-лимфоциты, В-лимфоциты и так называе­мые нулевые лимфоциты (0-клетки). Лимфоциты развиваются из недиффе­ренцированных лимфоидных костномозговых предшественников и при диф-ференцировке получают функциональные и морфологические признаки (наличие маркеров, поверхностных рецепторов), выявляемые иммунологи­ческими методами. О-лимфоциты (нулевые) лишены поверхностных мар­керов и рассматриваются как резервная популяция недифференцированных лимфоцитов.Т-лимфоциты — самая многочисленная популяция лимфоцитов, составляющая 70—90 % лимфоцитов крови. Они дифференцируются в вилочковой железе — тимусе, поступают в кровь и лимфу и заселяют Т-зоны в периферических органах иммунной системы — лимфатических узлах (глубокая часть коркового вещества), селезенке, в одиночных и множе­ственных фолликулах различных органов, в которых под влиянием анти­генов образуются Т-иммуноциты (эффекторные) и Т-клетки памяти. Для Т-лимфоцитов характерно наличие на плазмолемме особых рецепторов, способных специфически распознавать и связывать антигены. Эти рецеп­торы являются продуктами генов иммунного ответа. Т-лимфоциты обеспечивают клеточный иммунитет, участвуют в регуляции гуморального иммунитета, осуществляют продукцию цитокинов при действии антигенов. В популяции Т-лимфоцитов различают несколько функциональных групп клеток: цитотоксические лимфоциты (Тц), или Т-киллеры (Тк), Т-хелперы (Тх), Т-супрессоры (Тс). Тк участвуют в реак­циях клеточного иммунитета, обеспечивая разрушение (лизис) чужерод­ных клеток и собственных измененных клеток (например, опухолевых кле­ток). Рецепторы позволяют им распознавать белки вирусов и опухолевых клеток на их поверхности. При этом активизация Тц (киллеров) происхо­дит под влиянием антигенов гистосовместимости на поверхности чужерод­ных клеток.Кроме того, Т-лимфоциты участвуют в регуляции гуморального имму­нитета с помощью Тх и Тс. Тх стимулируют дифференцировку В-лимфоцитов. Взаимодействия клеток в иммунном ответе Клеточный иммунный ответ формируется при трансплантации органов и тканей, инфицировании вирусами, злокачественном опухолевом росте. В клеточном иммунитете участвует Тц (Тк), реагирующий с антиге­ном в комплексе с гликопротеинами МНС I класса в плазматической мем­бране клетки-мишени. Цитотоксическая Т-клетка убивает клетку, инфици­рованную вирусом, в том случае, если она узнает с помощью своих рецеп­торов фрагменты вирусных белков, связанные с молекулами МНС класса I на поверхности зараженной клетки. Связывание Тц с мишенями ведет к высвобождению цитотоксическими клетками порообразующих белков, на­зываемых перфоринами, которые полимеризуются в плазматической мембране клетки-мишени, превращаясь в трансмембранные каналы. Как по­лагают, эти каналы делают мембрану проницаемой, что способствует гибе­ли клетки. Гуморальный иммунный ответ обеспечивают макрофаги (ан-тигенпрезентирующие клетки), Тх и В-лимфоциты. Попавший в организм антиген поглощается макрофагом. Макрофаг расщепляет его на фрагменты, которые в комплексе с молекулами МНС класса II появляются на поверхности клетки. Такая обработка антигена мак­рофагом называется процессированием антигена. Для дальнейшего развития иммунного ответа на антиген необходимо участие Тх. Но прежде Тх должны быть активированы сами. Эта активация происходит тогда, когда антиген, обработанный макрофагом, распознается Тх. «Узнавание» Тх-клеткой комплекса «антиген + молекула МНС II клас­са» на поверхности макрофага (т.е. специфичное взаимодействие рецептора этого Т-лимфоцита со своим лигандом) стимулирует секрецию интерлей-кина-1 (ИЛ-1) макрофагом. Под воздействием ИЛ-1 активизируются син­тез и секреция ИЛ-2 Тх-клеткой. Выделение Тх-клеткой ИЛ-2 стимулирует ее пролиферацию. Такой процесс может быть расценен как аутокринная стимуляция, так как клетка реагирует на тот агент, который сама синтези­рует и секретирует. Увеличение численности Тх необходимо для реализации оптимального иммунного ответа. Тх активируют В-клетки путем секреции ИЛ-2. Активация В-лимфоцита происходит также при прямом взаимодей­ствии антигена с иммуноглобулиновым рецептором В-клетки. В-лимфоцит сам процессирует антиген и представляет его фрагмент в комплексе с мо­лекулой МНС II класса на клеточной поверхности. Этот комплекс узнает уже задействованный в иммунной реакции Тх. Узнавание рецептором Тх-клетки комплекса «АГ + молекула МНС II класса» на поверхности В-лим­фоцита приводит к секреции Тх-клеткой интерлейкинов — ИЛ-2, ИЛ-4, ИЛ-5, ИЛ-6, у-ИФН (у-интерферона), под действием которых В-клетка размножается и дифференцируется с образованием плазматических клеток и В-клеток памяти. Так, ИЛ-4 инициирует активацию В-клетки, ИЛ-5 сти­мулирует пролиферацию активированных В-клеток, ИЛ-6 вызывает созре­вание активированных В-клеток и превращение их в плазматические клет­ки, секретирующие антитела. Интерферон привлекает и активирует макро­фаги, которые начинают более активно фагоцитировать и разрушать вне­дрившиеся микроорганизмы. Передача большого количества переработанных макрофагом антигенов обеспечивает пролиферацию и дифференцировку В-лимфоцитов в направ­лении образования плазмоцитов, вырабатывающих специфические антите­ла на конкретный вид антигена. Т-супрессоры (Тс), подавляют способность лимфоцитов участвовать в выработке антител и таким образом обеспечивают иммунологическую толерантность, т. е. нечувствительность к определенным антигенам. Они регулируют количество образующихся плазматических клеток и количество антител, синтезируемых этими клетками. Оказалось, что тормозить выработ­ку антител может и особая субпопуляция В-лимфоцитов, которые получи­ли название В-супрессоров. Показано, что Т- и В-супрессоры могут дей­ствовать подавляюще также на реакции клеточного иммунитета.

No 68 Понятие об иммунной системе и е тканевых компонентах. Участие клеток крови, Т-и В-лимфоцитов и соединительной ткани (плазматические макрофаги) в иммунных реакциях организма.
Дифференцировка Т-лимфоцитов

Пре-Т-клетки мигрируют из костного мозга через кровь в центральный орган иммунной системы — вилочковую железу (тимус). Еще в период эм­брионального развития в вилочковой железе создается микроокружение, имеющее значение для дифференцировки Т-лимфоцитов. В формировании микроокружения особая роль отводится ретикулоэпителиальным клеткам этой железы, способным к продукции ряда биологически активных веществ. Мигрирующие в вилочковую железу пре-Т-клетки приобре­тают способность реагировать на стимулы микроокружения. Пре-Т-клетки в вилочковой железе пролиферируют, трансформируются в Т-лимфоциты, несущие характерные мембранные антигены. Т-лимфоциты генерируют и «поставляют» в кровообращение и в тимусзависимые зоны пе­риферических лимфоидных органов 3 типа лимфоцитов: Тц, Тх и Тс. Миг­рирующие из вилочковой железы «девственные» Т-лимфоциты (виргильные Т-лимфоциты) являются короткоживущими. Специфическое взаимодей­ствие с антигеном в периферических лимфоидных органах служит началом процессов их пролиферации и дифференцировки в зрелые и долгоживущие клетки (Т-эффекторные и Т-клетки памяти), составляющие большую часть рециркулирующих Т-лимфоцитов. Из вилочковой железы мигрируют не все клетки. Часть Т-лимфоцитов погибает. Существует мнение, что причиной их гибели служит присоединение антигена к антигенспецифическому рецептору. В вилочковой железе нет чу­жеродных антигенов, поэтому данный механизм может служить для удаления Т-лимфоцитов, способных реагировать с собственными структурами организ­ма, т.е. выполнять функцию защиты от аутоиммунных реакций. Гибель части лимфоцитов является генетически запрограммированной (апоптоз).

Дифференцировочные антигены Т-клеток. В процессе диф­ференцировки лимфоцитов на их поверхности появляются специфические мембранные молекулы гликопротеидов. Такие молекулы (антигены) можно обнаружить с помощью специфических моноклональных антител. Получены моноклональные антитела, которые реагируют лишь с одним антигеном клеточной мембраны. С помощью набора моноклональных антител можно идентифицировать субпопуляции лимфоцитов. Имеются наборы антител к дифференцировочным антигенам лимфоцитов человека. Антитела составля­ют относительно немного групп (или «кластеров»), каждая из которых уз­нает один-единственный белок клеточной поверхности. Создана номенкла­тура дифференцировочных антигенов лейкоцитов человека, выявляемых моноклональными антителами. Эта CD-номенклатура (CD — cluster of differentiation — кластер дифференцировки) базируется на группах моно­клональных антител, реагирующих с одними и теми же дифференцировочными антигенами. Получены многоклональные антитела к ряду дифференцировочных ан­тигенов Т-лимфоцитов человека. При определении общей популяции Т-клеток могут быть использованы моноклональные антитела специфичностей. Известны дифференцировочные антигены Т-клеток, которые характер­ны либо для определенных стадий онтогенеза, либо для различающихся по функциональной активности субпопуляций. Кроме дифференцировочных антигенов, известны специфические маркеры Т-лимфоцитов. Различают антигеннезависимую и антигензависимую дифференцировку и специализацию В- и Т-лимфоцитов.

Антигеннезависимая пролиферация и дифференцировка генетически запрограммированы на образование клеток, способных давать специфичес­кий тип иммунного ответа при встрече с конкретным антигеном благодаря появлению на плазмолемме лимфоцитов особых «рецепторов». Она совер­шается в центральных органах иммунитета (тимус, костный мозг) под влиянием специфических факторов, вырабатываемых клетками, формирующими микроокружение. Антигензависимая пролиферация и дифференцировка Т- и В-лимфоцитов происходят при встрече с антигенами в периферических лимфоидных органах, при этом образуются эффекторные клетки и клетки памяти. Образующиеся Т-лимфоциты составляют пул долгоживущих, рециркулирующих лимфоцитов, а В-лимфоциты – короткоживущих клеток

Дифференцировка В-лимфоцитов. В-лимфоциты отличаются от других типов клеток способностью синте­зировать иммуноглобулины. Зрелые В-лимфоциты экспрессируют Ig на кле­точной мембране. Такие мембранные иммуноглобулины функциони­руют как антигенспецифические рецепторы. Пре-В-клетки синтезируют внутриклеточный цитоплазматический IgM, но не имеют поверхностных иммуноглобулиновых рецепторов. Костномозговые виргильные В-лимфоциты имеют IgM-рецепторы на своей поверхности. Зрелые В-лимфоциты несут на своей поверх­ности иммуноглобулиновые рецепторы различных классов — IgM, IgG и др. Дифференцированные В-лимфоциты поступают в периферические лимфоидные органы, где при действии антигенов происходят пролиферация и дальнейшая специализация В-лимфоцитов с образованием плазмоцитов и В-клеток памяти. В ходе своего развития многие В-клетки переключаются с выработки антител одного класса на выработку антител других классов. Этот процесс называется переключением класса. Все В-клетки начинают свою деятельность по синтезу антител с выработки молекул IgM, которые встраиваются в плазматическую мембрану и служат рецепторами для анти­гена. Затем, еще до взаимодействия с антигеном, большая часть В-клеток переходит к одновременному синтезу молекул IgM и IgD. Когда виргильная В-клетка переходит от выработки одного лишь мембраносвязанного IgM к одновременному синтезу мембраносвязанных IgM и IgD, переключение происходит, вероятно, благодаря изменению процессинга РНК. При стимуляции антигеном некоторые из этих клеток активируются и начинают выделять антитела IgM, преобладающие в первичном гумораль­ном ответе. Другие стимулированные антигеном клетки переключаются на выработ­ку антител классов IgG, IgE или IgA; В-клетки памяти несут эти антитела на своей поверхности, а активные В-клетки их секретируют. Молекулы IgG, IgE и IgA в совокупности называются антителами вторичных классов, так как они, по-видимому, образуются только после антигенной стимуляции и преобладают во вторичных гуморальных ответах. При помощи моноклональных антител удалось выявить определенные дифференцировочные антигены, которые еще до появления цитоплазматических цепей позволяют отнести несущий их лимфоцит к В-клеточной линии. Он присутствует на пре-В-клетках в костном мозге, на всех периферических В-клетках. Дифференцировка клеток плазматического ряда

Этот процесс проходит в несколько этапов и продолжается в течение суток. Из стимулированных В-лимфоцитов образуются В-лимфобласты, ко­торые размножаются, часть из них приобретает способность к синтезу ан­тител и становится плазмобластами, превращающимися в последующем в проплазмоциты и плазмоциты. Плазмобласт— крупная клетка, характеризуется нали­чием большого количества рибосом и небольшим числом уплощенных ци­стерн гранулярной эндоплазматической сети. Ядро содержит деконденсиро-ванный хроматин и 1—2 больших ядрышка. Проплазмоцит характеризуется меньшим размером тела клеток, увели­чением количества концентрически расположенных узких канальцев грану­лярной эндоплазматической сети. Ядро лежит эксцентрично, хроматин бо­лее компактный, расположен группами около ядерной мембраны (имеет вид спиц колеса). Около ядра видна зона более светлой цитоплазмы, в ко­торой расположен увеличенный аппарат Гольджи. Плазмоцит характеризуется появлением большого коли­чества расширенных цистерн гранулярной эндоплазматической сети, запол­ненных продуцируемыми клеткой иммуноглобулинами. Ядро компактное, расположенное эксцентрично. Процесс плазмоцитогенеза сопровождается потерей способности клеток к делению и движению и уменьшением количества поверхностных им


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.034 с.