Антигенная структура токсинов. Анатоксины. Получение. Единицы измерения. — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Антигенная структура токсинов. Анатоксины. Получение. Единицы измерения.

2022-02-11 37
Антигенная структура токсинов. Анатоксины. Получение. Единицы измерения. 0.00 из 5.00 0 оценок
Заказать работу

 

Антигены бактериальных токсинов. Токсины бактерий обладают полноценными антигенными свойствами в том случае, если они являются растворимыми соединениями белковой природы.

Ферменты, продуцируемые бактериями, в том числе факторы патогенности, обладают свойствами полноценных антигенов.

Анатоксин – равный токсину. У него нет токсических свойств. Обладает антигенными свойствами.

Приготовление анатоксина. Анатоксин – токсин, лишенный своих ядовитых свойств, но сохранивший антигенные, применяется в практике для создания у человека активного антитоксического иммунитета против ряда инфекций (дифтерии, столбняка). Для получения анатоксина используют сильный экзотоксин. К экзотоксину налитому во флакон или колбу, добавляют 0,3 – 0,4 % формалина, после чего флакон тщательно закрывают и помещают в термостат при температуре 37-40 градусов на 18-30 дней до полного обезвреживания. Полученный анатоксин контролируют на безвредность путем ведения его морским свинкам или белым мышам, а также на стерильность и иммуногенность.

Количество анатоксина, дающее в смеси с 1 АЕ сыворотки инициальную флокуляцию, называется 1 иммуногенной единицей (1ИЕ).

 

    1. Антитела как факторы гуморального противомикробного и антитоксического иммунитета. Основные классы иммуноглобулинов.

Антителами называют белки, образование которых индуцируются антигенами и основным свойством которых является способность к специфическому взаимодействию с антигеном. Антитела – это свободные молекулы гликопротеидов, по электрофоретической подвижности относятся к гамма-глобулинам и по международной классификации именуются иммуноглобулинами. Они составляют 1/3 всех белков сыворотки крови (около 16 г/л).

 

Иммуноглобулины

Иммуноглобулины подразделяются на классы в зависимости от структуры. Свойств и антигенных способностей их тяжелых цепей. 5 классов иммуноглобулинов: G, M,A,D,E.

 

Иммуноглобулины класса G (IgG) составляют около 80% сывороточных иммуноглобулинов (в среднем 12 г/л). С молекулярной массой 16000 и скоростью седиментации 7S. Они образуются на высоте первичного иммунного ответа и при повторном введении антигена (вторичный ответ). IgG обладают весьма высокой авидностью (скорость и прочность связывания с молекулой антигена), т.е. высокой скоростью связывания с антигеном. Особенно бактериальной природы. При связывании активных центров IgG  с эпитопами антигена в области его Fc-фрагмента обнажается участок, ответственный за фиксацию первой фракции системы комплемента, с последующей активацией системы комплемента по классическому пути. Этим обуславливается способность IgG участвовать в защитных реакциях бактериолиза. IgG является единственным классов антител, проникающим через плаценту в организм плода. Через некоторое время после рождения ребенка содержание его в сыворотке крови падает и достигает минимальной концентрации к 3-4 мес., после чего начинает возрастать за счет накопления собственных IgG, достигая нормы к 7-летнему возрасту. Около 48% IgG содержится в тканевой жидкости. В которую он диффундирует из крови. IgG так же как и иммуноглобулины других классов. Подвергаются катаболическому распаду, который происходит в печени, макрофагах, воспалительном очаге под действием протеаз.

Иммуноглобулины класса М (IgM) – первыми начинают синтезироваться в организме плода и первыми появляются в сыворотке крови после иммунизации людей большинством антигенов. Они составляют около 13% сывороточных иммуноглобулинов при средней концентрации 1г/л. По молекулярной массе они значительно превосходят все другие классы иммуноглобулинов. Это связано с тем, что IgМ являются пентамерами, т.е. состоят из 5 субъединиц, каждая из которых имеет молекулярную массу, близкую к IgG. IgM принадлежит большая часть нормальных антител – изогемагглютининов, которые присутствуют в сыворотке крови в соответствии с принадлежностью людей к определенным группам крови. Эти агглютинические варианты IgM играют важную роль при переливании крови. Они не проходят через плаценту и обладают наиболее высокой авидностью. При взаимодействии с антигенами в пробирке вызывают их агглютинацию, преципитацию или связывание комплемента. В последнем случае активация системы комплемента ведет к лизису корпускулярных антигенов.

Иммуноглобулины класса А (IgA) встречаются в сыворотке крови и на поверхности слизистых оболочек. В сыворотке крови присутствуют мономеры Ig A с константой седиментации 7S в концентрации 2,5 г/л. Данный уровень достигается к 10 годам жизни ребенка. Сывороточный IgA синтезируется в плазматических клетках селезенки, лимфатических Злов и слизистых оболочек. Они не агглютинируют и не преципитируют антигены, не способны активировать комплемент по классическому пути, вследствие чего не лизируют антигены.

Секреторные иммуноглобулина класса А (SIgA)  отличаются от сывороточных наличием секреторного компонента, связанного с 2 или 3 мономерами иммуноглобулина А. Секреторный компонент является бета – глобулином с молекулярной массой 71 KD. Он секретируется клетками секреторного эпителия и может функционировать в качестве их рецептора, а к IgA присоединяется при прохождении последнего через эпителиальные клетки.

 Секреторный IgA  грает существенную роль в местном иммунитете, поскольку препятствует адгезии микроорганизмов на эпителиальных клетках слизистых оболочек рта, кишечника, респираторных и мочевыводящих путей. Вместе с тем SIgA в агрегированной форме активирует комплемент по альтернативному пути, что приводит к стимуляции местной фагоцитарной активности.

Секреторные IgA препятствуют адсорбции и репродукции вирусов в эпителиальных клетках слизистой оболочки, например при аденовирусной инфекции, полиомиелите, кори. Около 40% общего IgА содержится в крови.

Иммуноглобулины класса D (IgD). До 75 % IgD содержится в крови, достигая концентрации 0,03 г/л. Он имеет молекулярную массу 160000 D и скорость седиментации 7S.

IgD не проходит через плаценту и не связывает комплемент. До сих пор не ясно, какие функции выполняет IgD. Полагают, что он является одним из рецепторов предшественников В-лимфоцитов.

 Иммуноглобулины класса Е 9IgE). В норме содержится в крови в концентрации 0, 00025 г/л. Они синтезируются плазматическими клетками в бронхиальных и перитонеальных лимфатических узлах, в слизистой оболочке ЖКТ со скоростью 0,02 мг/л массы в сутки. Иммуноглобулины класса Е называют также реагинами, поскольку, они принимают участие в анафилактических реакциях, обладая выраженной цитофильностью.

 

    1. Защитная роль антител в приобретенном антиинфекционном иммунитете.

 

 

    1. Местный антиинфекционный иммунитет. Роль секреторных антител.

 

 

    1. Клеточный иммунный ответ в антиинфекционной защите. Способы его выявления. Аллергический метод диагностики. Механизмы цитотоксических реакций.

Клеточный иммунный ответ возникает к возбудителям, которые паразитируют Внутриклеточно (вирусы, риккетсии, хламидии).

Клеточный иммунный ответ лежит в основе противоопухолевого, противовирусного, трансплацитарного, осуществляется Т –лимфоцитами – эффекторами, его результат – появление Т-киллеров.

Осуществляется макрофагами – Т-клетками эффекторными.

Макрофаг захватывает антиген, перерабатывает его же антигены на поверхности NH- антигенами 1 клетки. В таком виде они воспринимают клонами Т-лимфоцитов эффектора, у которого есть антиген, специфичный к данной антигенной детерминанте.

Макрофаг выделяет ИЛ, который воздействует на этот клон Т-лимфоцитов, в этом случае под действием антиген, медиатора Т- лимфоциты иммунной памяти.

Т-киллеры способны находить, узнавать, убивать клетку, созданный антиген, вызывающий их образование.

Т-киллеры, Т-лимфоциты гиперчувствительности замедленного типа. Т- лимфоциты иммунной памяти.

Т-лимфоциты замедленного типа – секретируют множество лимфокинов, которые усиливают действие других иммунных и неиммунных клеток для уничтожения антигена.

Т-лимфоциты иммунной памяти не этом этапе перестают дифференцировать, хранят антигенную информацию – они первые воспринимают информацию об антигене.

 

 

    1. Интерфероны – факторы противовирусной защиты. Типы интерферонов. Интерфероногены. Способы получения интерферонов.

Были открыты как противовирусные агенты. Затем были обнаружены их иммунорегулирующие свойства. существует три разновидности интерферонов: альфа, бета, относимые к первому классу, и ИФ-гамма, относимый ко второму классу.

ИФ-альфа, продуцируемый лейкоцитами, обладает преимущественно противовирусным, антипролиферативным и противоопухолевым действием. ИФ-бета, образуемый фибробластами, обладает преимущественно противоопухолевым, а также антивирусным действием. ИФ-гамма – продукт Т-хелперов (Тх0 и Тх1), а также CD8+  Т-лимфоцитов – именуется лимфоцитарным и иммунным. Он обладает преимущественно иммуномодулирующим и слабым противовирусным эффектом.

Продукцию интерферонов 1 класса индуцируют вирусы и препараты двунитчатой ДНК, продукцию ИФ-гамма – антигены и митогенные препараты. Противовирусный эффект ИФ обусловлен способностью активировать в клетках синтез ингибиторов и ферментов, блокирующих репликацию вирусной ДНК и РНК, что приводит к подавлению репродукции вируса. Таков же механизм антипролиферативного противоопухолевого действия ИФ.

ИФ-гамма – полифункциональный иммуномодулирующий лимфокин, влияющий на рост и дифференцировку клеток разных типов. Он активирует макрофаги на этапе передачи антигенной информации лимфоциту, повышает их антимикробную и противоопухолевую активность, продукцию ИЛ-1. ИФ-гамма воздействует на клетки-мишени иммунологических воздействий, активируя экспрессию антигенов главного комплекса тканевой совместимости, рецепторов лимфотоксина, обеспечивая повышение эффективности иммунологического воздействия. ИФ-гамма активирует естественные киллеры, цитотоксические лимфоциты, подавляющие рост опухолей. Ряд эффектов ИФ-гамма осуществляет совместно с другими цитокинами, в частности формирование миелоидных клеток из костномозговых предшественников, дифференцировку и активацию В-лимфоцитов, стимуляцию гуморального и клеточного иммунитета.

 У здоровых людей ИФ в крови не обнаруживаются. Их уровень повышен при красной волчанке, ревмотоидном артрите, склеродермии. Наличие интерферонов в крови этих больных увеличивает резистентность к вирусным инфекциям и опухолям, но неблагоприятно сказывается на развитии аутоиммунных процессов, свойственных этим заболеваниям.

Препараты интерферонов используются для лечения лейкемии и некоторых других онкологических процессов. Для усиления противовирусной защиты используют средства, повышающие продукцию собственного интерферона (Интерфероногены). В качестве индукторов эндогенного интерферона применяют противовирусные вакцины, препараты РНК и ДНК.

 

    1. Реакции агглютинации в диагностике инфекций. Механизмы, диагностическое значение. Агглютинирующие сыворотки, диагностикумы. Нагрузочные реакции иммунитета.

 

Агглютинация – склеивание микробов или других клеток при воздействии на них иммунной сыворотки, содержащей антитела – агглютинины. Реакция агглютинации проявляется в том, что равномерной взвеси клеток, например бактерий, при добавлении иммунной сыворотки происходит скручивание клеток, образование зернышек или хлопьев, которые постепенно оседают на дно, жидкость же над осадком совершенно просветляется. Однако зернышки или хлопья образуются только в том случае, если реакция происходит в присутствии электролитов. Таким образом, для проявления реакции агглютинации нужно иметь: 1) антиген (агглютиноген) в виде взвеси клеток; 2)антитела (агглютинины) в виде иммунной сыворотки; 3) электролиты (физиологический раствор).

Внешнее проявление положительной реакции агглютинации бактерий имеет двоякий характер в зависимости от свойств антигена: у безжгутиковых бактерий, имеющих только один соматический или О-антиген, происходит склеивание непосредственно самих микробных клеток, и образующиеся кучки имеют вид мелких компактных зерен. Такая агглютинация называется тонкозернистой; она происходит медленно – в течение 18-22 часов. У бактерий со жгутиками имеются два антигена – соматический, О-антиген, в самой клетке и жгутиковый, Н-антиген, находящийся в жгутиках. Клетки склеиваются друг с другом жгутиками и образуют рыхлые крупные хлопья. Такая агглютинация называется крупнохлопчатой; она наступает быстро – в течение 2-4 часов.

Реакция аггютнации благодаря своей специфичности, простоте и постановке и демонстративности получила широкое распространение в микробиологической практике для диагноза многих инфекционных заболеваний: брюшного тифа, сыпного тифа, паратифов, дизентерии, холеры, бруцеллеза и др. Ею пользуются с диагностической целью в 2 направлений.

  1. Для определения выделения выделенного из какого-либо субстрата неизвестного микроба. В этом случае агглютинацию ставят с определенной, заранее приготовленной агглютинирующей сывороткой, полученной путем иммунизации кроликов определенным видом бактерий и, следовательно, содержащей агглютинины в отношении этих бактерий.

В качестве антигена берут культуру неизвестного исследуемого микроба. Положительный результат реакции указывает, что неизвестный микроб идентичен тому, который был взят в качестве антигена для приготовления агглютинирующей сыворотки.

2. Для обнаружения агглютининов к тому или другому определенному виду бактерий в сыворотке больного. В этом случае для агглютинации берут определенную лабораторную культуру бактерий (или несколько культур бактерий разных видов) в качестве в качестве антигена и сыворотку больного. Положительный результат агглютинации указывает на то, что сыворотке больного имеются агглютинины к определенному, известному, виду микроба, т.е. данный микроб является возбудителем заболевания, в процессе которого в сыворотке больного накопились защитные антитела.

 

Механизм: «теория решетки».

Активный центр АТ соединяется с 1 антигенной детерминантой, 2-ой активный центр реагирует с антигенной детерминантой, находящейся на 2 молекуле АГ, в результате происходит склеивание. Если в качестве АТ взята безжгутиковая бактерия, то зернистость мелкая – агглютинация., если жгутиковая – Н-агглютинация (крупная зернистость).

Варианты агглютинации:

  1. Ориентировочная на стекле – для выявления серологических свойств бактерий, для выявления признаков, для идентификации.
  2. Развернутая в пробирках – мало чувствительна и невысоко специфична. Определяется титр АТ (это максимальное разведение сыворотки, в которой обнаружена агглютинация).
  3. РНГА (нагрузочная реакция) – реакция непрерывной Геной агглютинации – используется АГ, абсорбированный на эритроцитах барана, т.о. перевод из растворимого в корпускулярный – агглютинация эритроцитов.

Агглютинирующая диагностическая сыворотка готовится путем иммунизации кроликов.

Сыворотка от больного для постановки реакции агглютинации получается из его крови, взятой стерильно на локтевой вене в количестве 5-10 мл. одновременно часть крови употребляется для посева. Если же кровь нужна только для постановки реакции, вполне достаточно 1-2 мл. тогда берут кровь из пальца проколом иглой Франка.

АГ для реакции агглютинации являются соответствующие живые ил убитые культуры бактерий. Живыми культурами пользуются тогда, когда агглютинация ставится с целью определения вида бактерий, выделенных из какого-либо субстрата.

Диагностикумы – диагностические препараты, содержащие АГ и используемые для обнаружения АТ.

 

    1. Реакция преципитации и ее значение, область применения. Методы постановки. Преципитирующие сыворотки, их получение и титрование. Использование реакции преципитации в диагностике инфекций.

Реакции преципитации основаны на феномене образования видимого осадка (преципитата) после взаимодействия растворимых либо находящихся в коллоидном дисперсном состоянии АГ с АТ. РП позволяют выявлять незначительные количества АГ. Они очень чувствительны, и их применяют для тонкого иммунохимического анализа, выявляющего отдельные компоненты в смеси с АГ. Метод имеет много разновидностей.

Реакция кольцепиципитации. На слой антисыворотки наслаивают жидкость, содержащую АГ, и чрез несколько секунд наблюдают образование кольца преципитата.

Реакции микропреципитации применяют для нефелометрического выявления АТ в небольших образцах сыворотки.

Преципитация в геле – на агаре с ее помощью определяют токсигенность выделенных бактерий. При дифтерии, стаф.токсикозе, для определения клеточного иммуноглобулина в сыворотке крови.

 

Реакция преципитации характеризуется высокой чувствительностью и специфичностью. Она позволяет обнаружить минималейшие следы белка – антигена (до разведения 1:100000 и выше), благодаря чему преципитация практически стала важной реакцией в химии, биологии и т.д.

 

Чрезвычайно большое значение реакция преципитации имеет в судебномедицинской практике для распознавания видовой принадлежности крови не только в свежем и жидком состояниях, но также и в высушенном, например, в пятнах очень давнего происхождения на одежде.

В санитарной практике реакция преципитации является методом для определения фальсификации мясных, мучных и других препаратов.

Для серологического диагноза пользуются реакцией преципитации в тех случаях, когда АГ может быть получен только в жидком состоянии, например в вытяжке из инфицированных органов, в спинномозговой жидкости, в моче больного и т.д.

 Реакции преципитации можно ставить как с веществами белковой природы – полноценными АГ, так и гаптенами – неполноценными АГ, которые сами по себе не могут вызывать образование АТ, но могут вступать в соединение с ними.

 

Постановка реакции. Для постановки реакции преципитации необходимо иметь:

  1. преципитирующую сыворотку, приготовленную путем иммунизации кроликов соответствующим антигеном;
  2. исследуемый АГ в виде отцентрифугированного или профильтрованного прозрачного раствора (экстракт их микробных тел, патологических субстратов от больного, органов, кровяных пятен, сывороточные белки и т.д.) Перед постановкой реакции разводят АГ – физиологическим раствором не менее чем на 1:1000;
  3. физиологический раствор (для разведения сыворотки и АГ);
  4. специальные узкие (не шире 0,75 см) пробирки с конусообразным дном и очень прозрачного стекла;
  5. пастеровские пипетки;

Обязательным условием является полная прозрачность участвующих в реакции агглютинации ингредиентов – сыворотки и АГ. В противном случае результаты реакции будут не ясны.

В пробирку наливают 0,2 мл преципитирующей сыворотки; затем при помощи пастеровской пипетки осторожно наслаивают на сыворотку 0,2 мл АГ (спускают жидкость по стенке пробирки так, чтобы она не смешивалась с сывороткой, а образовала над ней верхний слой). Добавив АГ. Пробирку ставят в штатив. При положительном результате реакции сразу же или в течение 5-10 минут на границе обеих жидкостей образуется мутное кольцо от выпавшего в осадок АГ. Степень реакции оценивается по величине кольца и времени его проявления.

К опыту ставится несколько контролей, а именно: 1) заведомо известны АГ + специфическая преципитирующая сыворотка; 2) преципитирующая сыворотка + физиологический раствор; 3) нормальная сыворотка + исследуемый АГ.

 

  27. Иммунофлюоросценция в диагностике инфекционных заболеваний. Необходимые препараты и компоненты для реакции.

 

Лекция.

 

28. Реакция иммунного лизиса как один из механизмом иммунитета. Компоненты реакции, практическое использование.

Одним из защитных свойств иммунной сыворотки при инфекции является ее способность растворять (лизировать) м/о или другие клеточные элементы, поступившие в организм. Специфические АТ, обуславливающие лизис (растворение) клеток, носят названия лизинов. В зависимости от АГ они точнее называются бактериолизинами, спирохетолизинами, цитолизинами и т.д.

 Лизины способны проявлять свое лизирующее действие на АГ только в присутствии дополнительного фактора – комплемента. Комплемент является составной частью любой свежей сыворотки, как нормальной, так и иммунной. При хранении или подогревании сыворотки комплемент разрушается.

Т.о. реакция лизиса происходит при участии двух компонентов: одного специфического, содержащегося в иммунной сыворотке (АТ), и другого неспецифического, присущего любой сыворотке, как иммунной, так и нормальной (комплемент).

Свежеизвлеченная из организма иммунная сыворотка способна к лизису, так как содержит и АТ и комплемент. Если же пользуются иммунной сывороткой, стоявшей или подвергнутой подогреванию и вследствие этого утратившей комплемент, то лизис произойдет только при условии добавления комплемента, т.е. свежей сыворотки. Для обеспечения постоянства результатов иммунную сыворотку заранее инактивируют нагреванием при 56 градусов в течение 30 минут (для разрушения имеющегося в ней комплемента) и прибавляют к ней строго определенное количество комплемента. В качестве комплемента принято пользоваться свежей сывороткой нормальной морской свинки.

При дифференциации холерных и холероподобных вибрионов.

 

 


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.059 с.