Часть 24. Лазерные Каналы -2 — КиберПедия 

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Часть 24. Лазерные Каналы -2

2021-12-07 34
Часть 24. Лазерные Каналы -2 0.00 из 5.00 0 оценок
Заказать работу

 

Состоявшийся в январе 2021 года пуск миссии Transporter-1 принес весьма интересную информацию: новые более подробные фото ИСЗ Starlink и их новой модификации с оборудованием Межспутникового лазерного канала связи ака InterSatellite Link

 

Вид всей укладки 5 спутников в стопке

 

 

Вот узел, который является оборудованием ISL (обведенный красным) в транспортном положении.

На вопрос: «это ли ISL?», сам Маск написал/подтвердил – «Laser...»

 

Предположение неизвестного автора, как может произойти его развертывание.

Отметим, что комплекс ISL возможно включает в себя как лазерный источник (черная труба), так и приемник сигнала (продолжение черной трубы металлическая «плита-площадка», соединенная с черной трубой белым кабелем).

В данном случае, автор никак не претендует на «истину в последней инстанции»

 

 

В любом случае это признак, что работа в Редмонде кипит, и создан за очень короткий срок практически предсерийный или даже серийный образец.

Интересный вопрос – кто из компаний в области лазерной коммуникации сотрудничает со SpaceХ? Возможно, компания Tesat из Германии. www.tesat.de/products#laser

Представитель Tesat-Spacecom Маттиас Моцигемба сообщил, что компания планирует испыты­вать в космосе полезную нагрузку оптической связи в течение двух лет и провести эксперименты, направленные на построение глобальной сети космических и наземных узлов.

Моцигемба сказал, что не может раскрыть заказчиков терминалов межспутниковой лазерной связи, но отметил, что Tesat в настоящее время поставляет оптические межспутниковые линии связи американским компаниям, строящим группировки на низкой околоземной орбите.

Вот продукция компании Tesat

 

 

Tesat может предложить подходящие лазерные терминалы для широкого спектра применений. В случае SpaceDataHighway это LCT135, который может безопасно, быстро и полностью отказоустойчи­во передавать до 1,8 Гбит/с на расстояния до 80 000 километров.

 

 

Для приложений на низких околоземных орбитах (LEO) есть SmartLCT, который можно развернуть на более мелких и легких спутниках с большой экономией веса и размера. Передача данных на расстояние до 45 000 километров при сохранении высокой скорости передачи данных до 1,8 Гбит/с. SmartLCT весит всего около 30 килограммов.

 

 

На фото терминал Smart LCT для низкоорбитальных группировок. На видео с корпоративного сайта Tesat можно найти отсылки к спутниковой сети Starlink и ее ИСЗ.

 

www.tesat.de/images/tesat/products/ConLCT_Video.mp4

 

Для спутников еще меньшего размера в портфолио Tesat Laser входят TOSIRIS и CubeLCT, кото­рые могут передавать данные прямо на Землю со скоростью 10 Гбит/с (TOSIRIS) или 100 Мбит/с (CubeLCT). Особенно впечатляет связанное с этим снижение веса. И без того небольшой TOSIRIS весит всего 8 кг, в то время как CubeLCT с длиной корпуса всего 10 сантиметров весит всего 360 грамм.

 

Важный вопрос: как информация попадет в лазерный канал? Напомню, что сейчас сеть Starlink использует 2 диапазона: на линии ИСЗ – абонтерминал – это Кu (11/14 ГГц), на линии ИСЗ- Гейтвей -Ка диапазон. Все современные спутники просто преобразовывают сигнал на одной частоте в сигнал той же ширины на другой. Вся информация хранится в волне, в которой модулируется несущая частота (те самые Кu или Ка). Если мы хотим использовать лазерный канал, то самое простое- это некую полосу частот Ка-диапазона на ИСЗ преобразовывать не в Кu для передачи на терминал вниз, а преобразовать в диапазон частот ТераГерцы, где и работают лазеры…

 

Это самый простой вариант. Нам не нужно демодулировать радиосигнал, превращать его в сово­купность кадров, извлекать их него Ip пакеты, и их как-то по ранее полученной таблице маршрутизации направлять на другой спутник. То есть не заниматься тем, что называется «обработка на борту» и пока, кроме одного неудачного опыта примерно 10 лет назад, не используется.

 

Однако, в этом случае, на терминале и гейтвее должен быть ВЫДЕЛЕН отдельный диапазон частот, и транспондер на борту ИСЗ, который, приняв Кu передает его в лазерный канал между ИСЗ.

 

Технически это осуществимо, но минус тут, что этот диапазон частот будет изъят из диапазона, на котором обслуживается основная масса абонентов, даже 100 МГц – это где-то 3% от общего ресурса.

 

Второй вопрос гораздо более серьезный – это управление и наведение лазерным лучом. В одном из известных видо в youtube луч очень ловко и красиво переключается с одного ИСЗ на другой, и от Нью-Йрка до Сингапура по кратчайшему маршруту бегут пакеты биржевых торговцев. Но реальность, как всегда, жестче – вот несколько цифр.

 

Время сканирования луча антенны с ФАР от 5 до 10 МИКРОсекунд

Задержка (пинг) в сети Starlink к сейчас Земля-Спутник- Земля 20-40 МИЛЛИсекунд

Критичная задержка по программе RDOF (интернет для сельской местности в CША) не более 100 МИЛЛИсекунд (видимо при ее превышении, нет гарантии комфортной работы VPN и прочих приложений.

Задержка в сетях на Геостационарных ИСЗ – 600-800 МИЛЛИсекунд.

 

Итак, сколько времени нужно, чтобы лазерный канал (устройство) переключилось на борту ИСЗ с одного ИСЗ на другой – то есть это в среднем 90 градусов, максимум видимо 150 градусов. Это точно не миллисекунды, а секунды, возможно минуты. Примеры управления лазерным лучом с помощью эле­кт­ро­магнитного поля пока неизвестны, а это единственный вариант перенацеливать луч лазера в течение мик­росекунд, то есть без ОБРЫВА СЕАНСА связи.

 

Если мы допускаем обрыв канала, то не надо даже на пушечный выстрел подходить к биржевым игрокам.

Какие есть варианты? Возможно самый простой и надежный – вообще отказаться от переключе­ния лазерных лучей между ИСЗ. Так как все спутники летят по жестко закрепленным орбитам и на фиксированных местах внутри нее, то, имея допустим 2 лазерных канала на каждом ИСЗ, можно обеспечить лазерное «кольцо» в данной плоскости орбиты для всех 18-20 ИСЗ, каждый ИСЗ имеет один канал на ИСЗ спереди и один канал на ИСЗ сзади, то есть можно пересылать информацию по ИСЗ в одной плоскости орбиты до тех пор, пока один из ИСЗ не окажется в зоне действия какого-либо наземного Гейтвея.

Если у нас будет 4 лазера на каждом ИСЗ, (достаточно спорный вариант с учетом указанных выше габаритов и весовых параметров лазеров), то тогда ИСЗ связывается с соседями спереди, слева в другой плоскости, сзади и справа. Тогда теоретически появляется возможность более быстрого прохождения луча над территорией без гейтвеев.

Но опять-таки рассчитывать на то, что трафик пойдет по самому КРАТЧАЙШЕМУ пути в таком варианте не стоит…

Резюме. Опция лазерных каналов связи усложнит существующую сеть ИСЗ и, видимо, сделает ИСЗ дороже (стоимость 2 комплектов лазерного канала от компании компании Mynaric составила 1,9 миллиона долларов). Безусловно, серийное производство значительно снизит эту сумму, но не до 100 долларов.

 

 


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.