Сравнение полиморфизма в функциональном и объектно-ориентированном программировании — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Сравнение полиморфизма в функциональном и объектно-ориентированном программировании

2021-12-07 21
Сравнение полиморфизма в функциональном и объектно-ориентированном программировании 0.00 из 5.00 0 оценок
Заказать работу

Система классов в ФП и в ООП устроены по-разному, поэтому к их сравнению следует подходить очень осторожно.

Полиморфизм является довольно обособленным свойством языка программирования. Например, классы в C++ изначально были реализованы как препроцессор для C. Для Haskell же существует алгоритм трансляции программ, использующих специальный полиморфизм, в программы с исключительно параметрическим полиморфизмом.

Несмотря на концептуальные различия систем классов в ФП и ООП, реализуются они примерно одинаково — с помощьютаблиц виртуальных методов.Используется часто в Java.

Операторы new и delete

Каждая программа во время работы получает определенное количество памяти, которую можно использовать. Такое выделение памяти под объекты во время выполнения называется динамическим, а сама память выделяется из хипа (heap). (Мы уже касались вопроса о динамическом выделении памяти в главе 1.) Напомним, что выделение памяти объекту производится с помощью оператора new, возвращающего указатель на вновь созданный объект того типа, который был ему задан. Например:

int *pi = new int;

размещает объект типа int в памяти и инициализирует указатель pi адресом этого объекта. Сам объект в таком случае не инициализируется, но это легко изменить:

int *pi = new int(1024);

Можно динамически выделить память под массив:

int *pia = new int[ 10 ];

Такая инструкция размещает в памяти массив встроенного типа из десяти элементов типа int. Для подобного массива нельзя задать список начальных значений его элементов при динамическом размещении. (Однако если размещается массив объектов типа класса, то для каждого из элементов вызывается конструктор по умолчанию.) Например:

string *ps = new string;

размещает в памяти один объект типа string, инициализирует ps его адресом и вызывает конструктор по умолчанию для вновь созданного объекта типа string. Аналогично

string *psa = new string[10];

размещает в памяти массив из десяти элементов типа string, инициализирует psa его адресом и вызывает конструктор по умолчанию для каждого элемента массива.
Объекты, размещаемые в памяти с помощью оператора new, не имеют собственного имени. Вместо этого возвращается указатель на безымянный объект, и все действия с этим объектом производятся посредством косвенной адресации.
После использования объекта, созданного таким образом, мы должны явно освободить память, применив оператор delete к указателю на этот объект. (Попытка применить оператор delete к указателю, не содержащему адрес объекта, полученного описанным способом, вызовет ошибку времени выполнения.) Например:

delete pi;

освобождает память, на которую указывает объект типа int, на который указывает pi. Аналогично

delete ps;

освобождает память, на которую указывает объект класса string, адрес которого содержится в ps. Перед уничтожением этого объекта вызывается деструктор. Выражение

delete [] pia;

освобождает память, отведенную под массив pia. При выполнении такой операции необходимо придерживаться указанного синтаксиса.

21. ССЫЛКА (С++)

В языке программирования C++ ссылка — это простой ссылочный тип, менее мощный, но более безопасный, чем указатель, унаследованый от языка Си. Название C++ ссылка может приводить к путанице, так как в информатике под ссылкой понимается обобщенный концептуальный тип, а указатели и С++ ссылки являются специфическими реализациями ссылочного типа.

Введение

Если мы объявили переменную без спецификатора extern, то для хранения значений выделяется память. Чтобы изменить или прочитать значение переменной (то есть значение находящейся в этой области памяти), мы обращаемся по имени этой переменной. В языке C имя сущности (переменной, типа, функции и т.д.) — это идентификатор. С точки зрения программиста, объявляя ссылку (или же указывая, что она будет возвращаемым значением или аргументом функции), мы задаём альтернативный идентификатор для уже созданного объекта. В языке C ссылок нет. С точки зрения реализации, ссылка — это, по сути, указатель, который жестко привязан к области памяти, на которую он указывает, и который автоматически разыменовывается, когда мы обращаемся по имени ссылки (это легко проверить, дизассемблируя простой пример).

Например:

   /* конкретные адреса переменных могут быть другими */

   int a;  //переменная с именем "a" типа int размещена по адресу 0xbfd86d6c

   int &ra = a; //задано альтернативное имя (ra) для переменной по адресу 0xbfd86d6c

 

   /* символ "&" используемый для уже созданного объекта является операцией взятия адреса *

    * (и эта операция не есть ссылка), то есть &a тут означает получить адрес переменной *

    * к которому привязано имя "a"                                                   */

   cout << &a << ' \n ' << &ra << ' \n ';

В stdout будет записано:

0xbfd86d6c
0xbfd86d6c

То есть оба имени "a" и "ra" привязаны к одному и тому же адресу.

Ссылки нельзя объявлять без привязки к переменной (то есть не инициализировав при объявлении). После объявления ссылки её невозможно привязать к другой переменной.

Важно отличать ссылки от оператора взятия адреса & (address of). Оператор взятия адреса используется для уже созданного объекта с целью получить его адрес (то есть адрес области памяти, где хранятся значения), а ссылка это только задание альтернативного имени объекта (с точки зрения программиста, а не реализации). Например:

   int a;  //переменная типа int размещена по адресу 0xbfd86d6c с именем "a"

   int b = 3;

 

   /* создан указатель с именем "p" по адресу 0xbf971c4c, значение этого указателя *

    * адрес объекта с именем "a" - 0xbfd86d6c (это значение можно будет менять) */

   int *p = &a;

 

   p = &b; //присваиваем указателю новое значение соответствующее адресу переменной "b"

Отличие указателя от ссылки в том, что получить само значение переменной, на который указывает указатель, можно только выполнив операцию разыменовывания * (символ "*" в объявлении является объявлением указателя, а при применении к уже созданной переменной является оператором разыменовывания). Например:

   int a = 3;

   int *p = &a; //объявили, создали, и инициализировали объект

 

   // здесь к уже созданному объекту с именем "p" применяется оператор "*", который означает

   // считать значение из "p", которое является адресом и далее считать данные по этому адресу

   cout << *p << ' \n ';

В stdout будет записано:

3

Синтаксис и терминология

Объявление вида:

<Type> & <Name>

где <Type> — тип и <Name> — идентификатор, указывает идентификатор, чьим типом является ссылка на <Type>.

Примеры:

1. int A = 5;

2. int& rA = A;

3. extern int& rB;

4. int& foo ();

5. void bar (int& rP);

6. class MyClass { int& m_b; /*... */ };

7. int funcX() { return 42; }; int (&xFunc)() = funcX;

Здесь, rA и rB являются типами «ссылок на int», foo() — функция, возвращающая ссылку на int, bar() — функция с ссылкой в качестве параметра, которая ссылается на int, MyClass — класс (class) с членом, ссылающимся на int,funcX() — функция, возвращающая int, xFunc() — псевдоним для funcX.

Типы, относящиеся к «ссылка на <Type>», иногда называются ссылочными типами. Идентификаторы ссылочного типа называются ссылочными переменными. Называть их переменными в строгом смысле будет неправильно (показано дальше).

[править]Связь с указателями

C++ ссылки отличаются от указателей несколькими особенностями:

· Невозможно ссылаться напрямую на объект ссылочного типа после его определения; каждое упоминание его имени напрямую представляет объект, на который он ссылается.

· В качестве результата первого указания не могут быть выполнены никакие арифметические вычисления, приведения типов, взятия адреса и т.п.

· После создания ссылки ее нельзя перевести на другой объект; в таких случаях говорят, не может быть переопределена. Это часто делают с указателями.

· Ссылки не могут быть null (т.е.указывать в никуда), тогда как указатели - могут; каждая ссылка ссылается на некий объект, вне зависимости от его корректности.

· Ссылки не могут быть неинициализированными. Так как невозможно переинициализировать ссылку, она должна быть инициализирована сразу после создания. В частности, локальные и глобальные переменные должны быть проинициализированы там же, где они определены, а ссылки, которые являются данными-членами сущностей класса, должны быть инициализированы в списке инициализатора конструктора класса.

Пример:

 

int& k; // компилятор выдаст сообщение: ошибка: 'k' declared as reference but not initialized ('k' объявлена как ссылка, но не инициализирована)


Существует простое преобразование между указателями и ссылками: операция взятия адреса (&) получает указатель, ссылающийся на тот же самый объект при переходе по ссылке, а ссылка, которая инициализирована при разыменовании (*) указателя будет указывать на тот же объект, что и указатель, где это возможно без неопределенного поведения. Эта тождественность - отражение типичной реализации, которая весьма эффективно превращает ссылки в указатели, которые неявно разыменовываются при каждом использовании.

Как следствие - во многих реализациях работа с переменными с автоматическим или статическим жизненным циклом по ссылке, хоть синтаксически и похожа на прямой доступ, может вызвать скрытые разыменования с дополнительными расходами.

Кроме того, из-за ограничения операций над ссылками, они намного легче в понимании, чем указатели, а также более защищены от ошибок. Тогда как указатели могут стать некорректными благодаря множеству причин, начиная с указания на null-значения и выходов за границы и до использования недопустимых приведений типов, ссылка может стать некорректной лишь в двух случаях:

· Если она ссылается на объект с автоматическим размещением в памяти, с завершившимся временем жизни,

· Если она ссылается на объект, находящийся в блоке динамической памяти, который был освобожден.

Первый вариант легко обнаруживается автоматически если ссылка имеет статическое размещение, но возникают проблемы, если ссылка - член динамически размещенного объекта; от второго защищаться сложнее. Это единственный недостаток ссылок, который может быть нивелирован при разумной политике выделения памяти.

Применение ссылок

· Помимо удобной замены указателям, еще одним полезным применением ссылок являются списки параметров функции, при помощи которых они могут передавать параметры, используемые для вывода без явного взятия адреса вызывающим. Например:

void square(int x, int& result) {

result = x * x;

}

Тогда следующий вызов поместит 9 в y:

square(3, y);

Тем не менее, следующий вызов приведет к ошибке компиляции, так как только параметры ссылки, не помеченные const, могут быть адресуемыми значениями:

square(3, 6);

· Возврат ссылки также позволяет непредусмотренный синтаксис, в котором вызовы функции могут быть присвоены:

int& preinc(int& x) { ++x; return x; }

preinc(y) = 5; // то же, что и ++y, y = 5

· Во многих реализациях, обычные механизмы передачи параметров часто подразумевают весьма затратную операцию копирования больших параметров. Ссылки, помеченные const, полезны в качестве способа передачи больших объектов между функциями без накладных расходов:

void f_slow(BigObject x) { /*... */

void f_fast(const BigObject& x) { /*... */ }

BigObject y;

f_slow(y); // медленно, копирует y в параметр x

f_fast(y); // быстро, дает прямой доступ к y (только для чтения)

_

Если f_slow() действительно требует собственной копии x для модификации, то она должна создать копию явным образом. Тогда как тот же способ может быть применен с использованием указателей, что вызовет модификацию каждого вызова функции, добавив громоздкий оператор взятия по адресу (&) в качестве аргумента, причем довольно сложно будет отменить изменения, если объект становится меньше.

· Причиной введения ссылок в язык С++ в основном являлась необходимость перегрузки операторов, применяемых к объектам пользовательских типов (классов). Как упоминалось выше, передача по значению громоздких объектов в качестве операндов вызывала бы лишние затраты на их копирование. С другой стороны, передача операндов по адресу с использованием указателей, приводит к необходимости взятия адресов операндов в выражениях. Например:

class BigClass

{

//...

friend BigClass operator-(BigClass* left, BigClass* right);

//...

};

 

BigClass x, y, z;

//...

x = &y - &z;

Однако, выражение &y - &z уже имело определённый смысл в языке С.

22. ЗНАКОМСТВО С КЛАССАМИ C++

Класс представляет собой главное инструментальное средство C++ для объектно-ориентированного программирования. Как вы узнаете из данного урока, класс очень похож на структуру, в которой сгруппированы элементы, соответствующие данным о некотором объекте, и оперирующие этими данными функции (называемые методами). Вы узнаете, что объект представляет собой некоторую сущность, например телефон. Класс C++ позволяет вашим программам определять все атрибуты объекта. В случае, когда объектом является телефон, класс может содержать такие элементы данных, как номер и тип телефона (кнопочный или дисковый) и функции, работающие с телефоном, например dial, answer, и hang_up. Группируя данные об объекте и кодируя их в одной переменной, вы упрощаете процесс программирования и увеличиваете возможность повторного использования своего кода. Этот урок знакомит вас с классами C++. К концу урока вы освоите следующие основные концепции:

  • Для определения класса программа должна указать имя класса, элементы данных класса и функции класса (методы).
  • Определение класса обеспечивает шаблон, с помощью которого ваши программы могут создать объекты типа этого класса, подобно тому, как программы создают переменные типа int, char и т. д.
  • Программа присваивает значения элементам данных класса, используя оператор точку.
  • Программа вызывает функцию-элемент класса, используя оператор точку.

 23-24. ПРЕДСТАВЛЕНИЕ ОБ ОБЪЕКТАХ И ОБЪЕКТНО-ОРИЕНТИРОВАННОМ ПРОГРАММИРОВАНИИ

В известном смысле объект представляет собой сущность. Программа обычно использует переменные для хранения информации о различных реально существующих сущностях, например служащих, книгах и даже файлах. При объектно-ориентированном программировании вы фокусируетесь на предметах, образующих систему, и операциях, которые вы должны выполнять над этими предметами. Например, для объекта-файла вы могли бы иметь операции, которые печатают, отображают или изменяют файл. В C++ вы используете класс для определения своих объектов. Ваша цель состоит в том чтобы включить в класс столько информации об объекте, сколько требуется. Исходя из этого, можно подобрать класс, созданный вами для одной программы, и использовать его в нескольких разных программах.

Класс позволяет вашим программам группировать данные и функции которые выполняют операции над этими данными. Большинство книг и статей об объектно-ориентированном программировании называют функции класса методами. Подобно структуре, класс C++ должен иметь уникальное имя, за которым следует открывающая фигурная скобка, один или несколько элементов и закрывающая фигурная скобка:

class class_name

{
int data_member; // Элемент данных
void show_member(int); // Функция-элемент
};

После определения класса вы можете объявлять переменные типа этого класса (называемые объектами), как показано ниже:

class_name object_one, object_two, object_three;

Следующее определение создает класс employee, который содержит определения данных и метода:

class employee

{
public:
char name[64];
long employee_id;
float salary;
void show_employee(void)

{
cout << "Имя: " << name << endl;
cout << "Номер служащего: " << employee_id << endl;
cout << "Оклад: " << salary << endl;
};
};

В данном случае класс содержит три переменные и одну функцию-элемент. Обратите внимание на использование метки public внутри определения класса. Как вы узнаете из урока 22, элементы класса могут быть частными (private) или общими {public), от чего зависит, как ваши программы обращаются к элементам класса. В данном случае все элементы являются общими, это означает, что программа может обращаться к любому элементу, используя оператор точку. После определения класса внутри вашей программы вы можете объявить объекты (переменные) типа этого класса, как показано ниже:

————————————————————— Имя класса

employee worker, boss, secretary; //---------> Переменные класса (объекты)

Следующая программа EMPCLASS.CPP создает два объекта employee. Используя оператор точку, программа присваивает значения элементам данных Затем программа использует элемент show_employee для вывода информации о служащем:

#include <iostream.h>

#include <string.h>

class employee

{
public:
char name [64];
long employee_id;
float salary;
void show_employee(void)

{
cout << "Имя: " << name << endl;
cout << "Номер служащего: " << employee_id << endl;
cout << "Оклад: " << salary << endl;
};
};

void main(void)

{
employee worker, boss;
strcpy(worker.name, "John Doe");
worker.employee_id = 12345;
worker.salary = 25000;
strcpy(boss.name, "Happy Jamsa");
boss.employee_id = 101;
boss.salary = 101101.00;
worker.show_employee();
boss.show_employee();
}

Как видите, программа объявляет два объекта типа employee — worker и boss, а. затем использует оператор точку для присваивания значений элементам и вызова функции show_employee.

Представление об объектах

Большинство программ на C++ отражают реальные существующие объекты. В известном смысле объекты представляют собой сущности, например автомобиль, собаку, часы и т. д. Обычно объект имеет несколько атрибутов и операций, которые программа должна выполнять над этими атрибутами. Например, в случае часов свойства могут включать текущее время и время будильника. Операции такого объекта могли бы содержать установку времени, установку будильника или выключение будильника. При объектно-ориентированном программировании ваши программы фокусируются на объектах и операциях над этими объектами.


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.