Принцип работы плазматрона косвенного действия — КиберПедия 

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Принцип работы плазматрона косвенного действия

2022-05-08 23
Принцип работы плазматрона косвенного действия 0.00 из 5.00 0 оценок
Заказать работу

Плазменные печи

 

Общая характеристика

Работа плазменных печей (установок плазменного нагрева) основана на использовании газоразрядной плазмы в качестве теплоносителя. Достаточная электрическая проводимость плазмы обеспечивает преобразование электрической энергии в тепловую за счет токов проводимости Iпр. подводимых через электроды (кондукционный способ) или возбуждаемых переменным электромагнитным полем (индукционный способ). Поскольку формирование плазмы связано с эндотермическими процессами диссоциации и ионизации газов, плазма характеризуется достаточно высоким энергосодержанием, позволяющим использовать её в энергоёмких пирометаллургических процессах, в том числе для плавки высоколегированных сталей и сплавов, прямого восстановления металлов из руд и получения ферросплавов.

Плазмотрон – устройство для преобразования электрической энергии источника питания в тепловую энергию струи (потока) плазмы, т.е. плазменный генератор. В зависимости от способа преобразования электрической энергии в тепловую различают плазмотроны: дуговые, индукционные (высокочастотные) и электронные (сверхвысокочастотные).

Наибольшее распространение получили дуговые плазматроны, в которых возможно достижение температуры плазмы порядка 10000 К путём сжатия столба дуги стенками канала (гидродинамическое сжатие), газовым потоком (аэродинамическое сжатие) или внешним магнитным полем (электромагнитное сжатие). Для получения дугового разряда можно применить как постоянный, так и переменный ток. Стремясь получить стабильную работу плазматрона, чаще всего используют постоянный ток во избежании обрыва дуги при переменном токе. Различают плазматроны с независимой дугой (косвенного действия) и с зависимой дугой (прямого действия). Выбор схемы работы плазмотрона зависит от назначения печи и необходимых требований по эффективности её работы

 

Принцип работы плазматрона косвенного действия

 

Принцип работы плазматрона косвенного действия используют в тех случаях, когда замкнуть электрическую цепь между электродом плазматрона и нагреваемым материалом нельзя. Схема такого плазматрона показана на рис.1. Вокруг водоохлаждаемого катода 1 находится водоохлаждаемый корпус 3. В щель между катодом и корпусом подают плазмообразующий газ 2. Корпус отделяют от водоохлаждаемого сопла- анода 6 изоляционные вставки 4. Катод и анод соединяют электрической сетью 9.Между катодом и анодом зажигается электрическая дуга 5. Дуга ионизирует плазмообразующий газ главным образом путём термической ионизации. Конструктивное оформление катодно-анодного участка выполнено так, что дуга сжимается относительно холодными слоями газа и собственным магнитным полем дуги. Это противодействие расширению площади дуги (как это наблюдается при свободно горящей дуге) и повышает плотность тока в дуге.

Все элементы плазматрона охлаждаются водой, поэтому часть тепла, которая выделяется в горящей дуге, передаётся системе охлаждения, в следствии чего КПД плазмотрона сравнительно невысок. Его можно повысить расходом плазмообразующего газа Qv (рис.2), однако при этом падает средняя температура струи плазмы, выходящей из сопла плазматрона. Среднюю температуру плазмы можно повысить увеличением подводимой мощности P (рис.3). Нелинейность повышения температуры при этом, в первую очередь, объясняется повышением теплопроводности и излучения столба плазмы.

Одним из недостатков плазматронов с независимой дугой является высокая тепловая нагрузка в месте анодного тепла, что может привести к разрушению материала анода. Поэтому иногда на анод устанавливают магнитную катушку, которая своим полем вращает анодное пятно по поверхности анодного сопла, что увеличивает время службы плазматронов.

 

 

Рис. 1.Плазматрон с независимой дугой (косвенного действия):

Рис. 2.Зависимость к.п.д. Рис. 3. Зависимость средней

Плазматрона косвенного температуры плазменной

Рис.4. Плазматрон с зависимой

Дугой (прямого действия),

обозначения см. рис. 1.

Плазмообразующие газы

 

В металлургической практике могут использоваться такие инертные плазмообразующие газы как аргон, азот, водород, гелий, характеристики которых представлены в таблице 1.

Из таблицы 1 следует, что состав плазмообразующей смеси сильно влияет на энергетические параметры электрического разряда и плазменной струи. Кроме того, необходимо учитывать химическое воздействие плазмообразующих газов на металл и на процесс эрозии катодного материала. Можно ожидать, что в будущем будут широко использоваться плазмообразующие смеси, которые с одной стороны энергетически более выгодны и с другой стороны менее дефицитны и более дешевы, чем атомарные газы (аргон, гелий). Из таблицы 1 видно, что двухатомные газы имеют преимущества перед атомарными газами.

 

Таблица 1. Характеристики плазмообразующих газов

 

Параметры

Плазмообразующие газы

аргон азот водород гелий
Молекулярная (атомная) масса……… Плотность кг*м-3, при: нормальных условиях………………... Т=104 К и р~0.1 МПа…………………. Удельная теплоёмкость при нормальных условиях, кДж/(кг*К-1)... Коэффициент теплопроводности, Вт*(м*К)-1 при: нормальных условиях ……………….. Т=104 К и р~0.1 МПа……………........ Электропроводность, см/м-1, при Т=104 К и р~0.1 МПа ………………… Энергия диссоциации, МДж*моль-1 Потенциал ионизации, В: однократной…………………………... двукратной……………………………. Энергия ионизации, МДж*моль-1 однократной…………………………... двукратной……………………………. Энтальпия плазмы, кДж*моль-1, при: Т=104 К и р~0.1 МПа………………… Т=1,5*104 К и р~0.1 МПа…………….     39,940   1,78 0,048   0,52     0,0163 0,42   3650     15,76 27,7   1,50 2,65   6,15 34,6 28,016   1,25 0,018   1,04     0,0243 2,63*   2740 0,72   14,53 29,6   1,40 2,83   50,3 121,5 2,016   0,084 -   14,2     0,174 3,45**   1400 0,43   13,595 -   1,35     460,9 1383 4,002   0,178 -   5,26     0,151 2,29   6300 -   24,59 54,38   2,36 6,22   49,9 74,4  

* -максимальное значение при Т=7*108 К равно 6,08 Вт (м*к)

** -максимальное значение при Т=3,8*104 К равно13,4 Вт (м*к)

 

В настоящее время используют 2 типа плазменно-дуговых печей: с огнеупорной футеровкой и с водоохлаждаемым кристаллизатором. В обоих типах плазменно-дуговых печей переплав можно осуществить в вакууме или в регулируемой газовой атмосфере.

Плазменно-дуговые печи с огнеупорной футеровкой (рис.5) эксплуатируют как промышленно производственные агрегаты (табл. 2). Самые крупные 35-т плазменно-дуговые печи, разработанные совместно ГДР и СССР, сооружены с использованием четырёх плазматронов мощностью 6 МВт каждый. Плазматроны поставлены по бокам под наклоном. Расход аргона на все работающие плазматроны составляет 45 м3/ч (22,5 г/с). Расход воды соответственно 167 м3/ч. Скорость расплавления составляет 20000 кг/ч и расход электроэнергии на расплавление соответственно 500 кВт*ч/т. Огнеупоры выдерживают около 150 плавок и плазматроны практически возобновляются через 30 часов. Печи уже несколько лет работают стабильно. Их эксплуатация протекает практически бесшумно, что значительно облегчает работу у печей. Годовая производительность 35-т печей - составляет 80000 т высоколегированной стали. На основании опыта печей вместимостью 15 и 35 т в Германии проводились исследования с целью создания более крупных печей вместимостью 65и 110т.

Исследования тепловой работы крупных печей показали, что они работают эффективно только тогда, когда плазменная струя передаёт тепло в расплавленные каналы шихты, т.к. мощность дуги, передаваемая шихте излучением, конвекцией и теплопроводностью характеризуется следующим отношением Ризл.ит=40:8:1. Для обеспечения надёжного зажигания плазматронов часто в крупных печах применяют дополнительную (вспомогательную) горелку.

Таблица 2.Характеристика плазменно-дуговых печей с керамическим тиглем

 

Страна Вместимость, кг Глубина металла мм Диаметр ванны, мм Высота мм Мощность кВт Сила тока, кА Напряжение дуги, В
СНГ 300 30000 130 - 640 - 390 - 300 До 24000 2 - 50-150 -
Германия 250 15000 35000 160 550 - 510 2900 - 470 1400 - 3×100 3×4000 4×6000 - 6 9 - до 700 до 700
США 23 136 900 - 150 - 305 560 1525 205 - 1525 - 120 - 0,5-0,6 1,5 2,5 110 - 160-177

 

Таблица 3. Характеристика плазменно-дуговых печей с кристаллизатором конструкции института электросварки им. Патона

 

Параметры

Тип печи

У-365 У-487 У-400 У-500 У-555
Мощность плазматронов, кВт…… Число плазматронов….. Мощность вспомогательного оборудования, кВт….. Напряжение питания, В…… Максимальная масса слитка, кг… Максимальная длина слитка, кг… Макс. диаметр слитка, мм……. Макс. длина переплавляемой заготовки, мм…. Скорость вытягивания слитка, мм*мин-1.. Высота установки, мм………         240   6   18,5   -   130   150   950     1500     1-40   3550     240   6   29   80   170   1200   150     2000     1,5-15   7600     240   6   32   -   380   1000   250     2000     1,5-15   10350     2000   6   35   -   3500   1500   630     3000     1,5-15   10000     2800   6   35   До 200   5000   2100   630     3500     1,5-15   11500

 

Особенности тепловой работы. Теплообменные условия характеризуют теплопередачу от плазменной дуги в рабочее пространство ПДП: на боковую поверхность футеровки происходит, в основном излучение (до 85-95% всего теплового потока) от плазменной как линейного высокотемпературного (100000-25000 К) излучателя; на ванну в зоне анодного пятна поступает 35-50% тепла в результате конвективного переноса плазмы из столба дуги.

Рис.5. ПДП с водоохлаждаемым кристаллизатором:

а- боковая подача шихты; b -центральная подача шихты;

Плазменные печи

 

Общая характеристика

Работа плазменных печей (установок плазменного нагрева) основана на использовании газоразрядной плазмы в качестве теплоносителя. Достаточная электрическая проводимость плазмы обеспечивает преобразование электрической энергии в тепловую за счет токов проводимости Iпр. подводимых через электроды (кондукционный способ) или возбуждаемых переменным электромагнитным полем (индукционный способ). Поскольку формирование плазмы связано с эндотермическими процессами диссоциации и ионизации газов, плазма характеризуется достаточно высоким энергосодержанием, позволяющим использовать её в энергоёмких пирометаллургических процессах, в том числе для плавки высоколегированных сталей и сплавов, прямого восстановления металлов из руд и получения ферросплавов.

Плазмотрон – устройство для преобразования электрической энергии источника питания в тепловую энергию струи (потока) плазмы, т.е. плазменный генератор. В зависимости от способа преобразования электрической энергии в тепловую различают плазмотроны: дуговые, индукционные (высокочастотные) и электронные (сверхвысокочастотные).

Наибольшее распространение получили дуговые плазматроны, в которых возможно достижение температуры плазмы порядка 10000 К путём сжатия столба дуги стенками канала (гидродинамическое сжатие), газовым потоком (аэродинамическое сжатие) или внешним магнитным полем (электромагнитное сжатие). Для получения дугового разряда можно применить как постоянный, так и переменный ток. Стремясь получить стабильную работу плазматрона, чаще всего используют постоянный ток во избежании обрыва дуги при переменном токе. Различают плазматроны с независимой дугой (косвенного действия) и с зависимой дугой (прямого действия). Выбор схемы работы плазмотрона зависит от назначения печи и необходимых требований по эффективности её работы

 

Принцип работы плазматрона косвенного действия

 

Принцип работы плазматрона косвенного действия используют в тех случаях, когда замкнуть электрическую цепь между электродом плазматрона и нагреваемым материалом нельзя. Схема такого плазматрона показана на рис.1. Вокруг водоохлаждаемого катода 1 находится водоохлаждаемый корпус 3. В щель между катодом и корпусом подают плазмообразующий газ 2. Корпус отделяют от водоохлаждаемого сопла- анода 6 изоляционные вставки 4. Катод и анод соединяют электрической сетью 9.Между катодом и анодом зажигается электрическая дуга 5. Дуга ионизирует плазмообразующий газ главным образом путём термической ионизации. Конструктивное оформление катодно-анодного участка выполнено так, что дуга сжимается относительно холодными слоями газа и собственным магнитным полем дуги. Это противодействие расширению площади дуги (как это наблюдается при свободно горящей дуге) и повышает плотность тока в дуге.

Все элементы плазматрона охлаждаются водой, поэтому часть тепла, которая выделяется в горящей дуге, передаётся системе охлаждения, в следствии чего КПД плазмотрона сравнительно невысок. Его можно повысить расходом плазмообразующего газа Qv (рис.2), однако при этом падает средняя температура струи плазмы, выходящей из сопла плазматрона. Среднюю температуру плазмы можно повысить увеличением подводимой мощности P (рис.3). Нелинейность повышения температуры при этом, в первую очередь, объясняется повышением теплопроводности и излучения столба плазмы.

Одним из недостатков плазматронов с независимой дугой является высокая тепловая нагрузка в месте анодного тепла, что может привести к разрушению материала анода. Поэтому иногда на анод устанавливают магнитную катушку, которая своим полем вращает анодное пятно по поверхности анодного сопла, что увеличивает время службы плазматронов.

 

 

Рис. 1.Плазматрон с независимой дугой (косвенного действия):


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.021 с.