Надземная прокладка газопроводов — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Надземная прокладка газопроводов

2021-03-17 137
Надземная прокладка газопроводов 0.00 из 5.00 0 оценок
Заказать работу

11.1 Надземная прокладка газопроводов или их отдельных участков допускается в пустынных и горных районах, болотистых местностях, районах горных выработок, оползней и районах распространения многолетнемерзлых грунтов, на неустойчивых грунтах, а также на переходах через естественные и искусственные препятствия с учетом требований 5.2.

В каждом конкретном случае надземная прокладка газопроводов должна быть обоснована технико-экономическими расчетами, подтверждающими экономическую эффективность, техническую целесообразность и надежность газопровода.

11.2 При прокладке газопроводов и их переходов через естественные и искусственные препятствия следует использовать несущую способность самого газопровода. В этом случае могут применяться следующие конструкции надземной прокладки:

- балочные однопролетные;

- балочные многопролетные;

- шпренгельные;

- вантовые;

- висячие;

- арочные;

- мостовые фермы.

11.3 В отдельных случаях при соответствующем обосновании в проекте допускается предусматривать для прокладки газопроводов специальные мостовые конструкции (в виде балок и ферм).

11.4 Надземные переходы газопроводов могут проектироваться, как правило, с компенсацией продольных деформаций. Прямолинейные балочные переходы допускается проектировать без компенсации продольных деформаций. Возможность прокладки без компенсации продольных деформаций, а также размеры необходимых компенсационных участков определяются по результатам расчетов на прочность и устойчивость в соответствии с требованиями главы 13.

11.5 Величины пролетов надземного газопровода следует назначать в зависимости от принятой схемы и конструкции прокладки в соответствии с требованиями главы 13.

11.6 При всех способах компенсации продольных деформаций газопроводов следует применять отводы, допускающие проход внутритрубных ВТУ.

11.7 В местах установки на газопроводе арматуры необходимо предусматривать стационарные площадки для ее обслуживания. Площадки должны быть несгораемыми и иметь конструкцию, исключающую скопление на них мусора и снега.

На начальном и конечном участках перехода газопровода от подземной к надземной прокладке необходимо предусматривать постоянные ограждения из металлической сетки высотой не менее 2,2 м.

11.8 При проектировании надземных переходов необходимо учитывать продольные перемещения газопроводов в местах их выхода из грунта. Для уменьшения величины продольных перемещений в местах выхода газопроводов из грунта допускается применение подземных компенсирующих устройств или устройство поворотов вблизи перехода (компенсатора-упора) с целью восприятия продольных перемещений подземного газопровода на участке, примыкающем к переходу.

В балочных системах газопроводов в местах их выхода из грунта опоры допускается не предусматривать. В местах выхода газопровода из слабосвязанных грунтов следует предусматривать мероприятия по обеспечению проектного положения (искусственное упрочнение грунта, укладку железобетонных плит и др.).

11.9 Опоры балочных систем газопроводов следует проектировать из несгораемых материалов. При проектировании надземных газопроводов электроизоляцию трубопровода от опор следует предусматривать при наличии на трубопроводе потенциала электрохимической защиты.

11.10 Высоту от уровня земли или верха покрытия дорог до низа трубы следует принимать в соответствии с требованиями СНиП II-89-80* [21], но не менее 0,5 м. Высоту от верха покрытия проезжей части дорог до низа трубы следует принимать в соответствии с требованиями СНиП II-89-80* [21].

Высота прокладки газопроводов над землей на участках, где предусматривается использование многолетне мерзлых грунтов в качестве основания, должна назначаться из условия обеспечения естественного состояния грунтов под опорами и газопроводом.

При проектировании газопроводов для районов массового перегона животных или их естественной миграции минимальные расстояния от уровня земли до газопроводов следует принимать по согласованию с заинтересованными организациями.

11.11 При прокладке газопроводов через препятствия, в том числе овраги и балки, расстояние от низа трубы или пролетного строения следует принимать при пересечении:

оврагов и балок - не менее 0,5 м до уровня воды при 5 %-ной обеспеченности;

несудоходных, несплавных рек и больших оврагов, "где возможен ледоход, - не менее 0,2 м до уровня воды при 1 %-ной обеспеченности и от наивысшего горизонта ледохода;

судоходных и сплавных рек - не менее величины, установленной нормами проектирования подмостовых габаритов на судоходных реках и основными требованиями к расположению мостов.

Возвышение низа трубы или пролетных строений при наличии на несудоходных и несплавных реках заломов или корчехода устанавливается особо в каждом конкретном случае, но должно быть не менее 1 м над горизонтом высоких вод (по году 1 %-ной обеспеченности).

11.12 При прокладке газопроводов через железные дороги обшей сети расстояние от низа трубы или пролетного строения до головки рельсов следует принимать в соответствии с требованиями габарита С по ГОСТ 9238.

Расстояние в плане от крайней опоры надземного газопровода, м, должно быть не менее:

- до подошвы откоса насыпи - 5;

- бровки откоса выемки - 3;

- крайнего рельса железной дороги - 10.

11.13 В местах надземных переходов газопроводов через ручьи, овраги и другие препятствия следует предусматривать конструктивные решения, обеспечивающие надежную защиту от тепловых и механических воздействий соседних трубопроводов при возможном разрыве на одном из них.

11.14 Газопроводы надземной прокладки должны быть обеспечены защитным покрытием от атмосферной коррозии материалами, разрешенными к применению в ОАО «Газпром».

Нагрузки и воздействия

12.1 Общие требования

12.1.1 Нагрузки и воздействия, которые необходимо учитывать при проверке прочности газопровода, классифицируются следующим образом:

- функциональные;

- природные;

- строительные;

- случайные.

Функциональные нагрузки

12.2.1 Функциональные нагрузки - это нагрузки, обусловленные процессом эксплуатации газопровода. При определении функциональных нагрузок следует учитывать следующие факторы:

- внутреннее давление;

- температурные воздействия;

- весовые нагрузки;

- упругий изгиб газопровода.

12.2.2 Внутреннее давление

12.2.2.1 Принятый в настоящем Стандарте термин «рабочее давление» (см. пункт 3.27) соответствует ГОСТ 14249.

12.2.2.2 Под расчетным давлением для элементов магистрального газопровода следует понимать давление, на которое проводится их расчет на прочность.

12.2.2.3 В качестве расчетного давления в газопроводе следует принимать давление P d, МПа, вычисляемое по формуле

(12.1)

где k р - коэффициент надежности по внутреннему давлению;

р - рабочее давление, МПа.

Значение коэффициента надежности по внутреннему давлению k р зависит от системы регулирования внутреннего давления. При отсутствии соответствующих обоснований при проектировании газопровода значение коэффициента надежности по внутреннему давлению следует принимать равным k р - 1,10.

12.2.2.4 Обвязочные трубопроводы КС следует дополнительно рассчитывать на динамические нагрузки от пульсации давления.

12.2.3 Температурные воздействия

12.2.3.1 Температурные воздействия обусловливаются разностью между максимальной (минимальной) температурой стенки газопровода во время эксплуатации и минимальной (максимальной) температурой газопровода при его укладке и засыпке.

12.2.3.2 Температурный перепад в металле стенок труб следует принимать равным разнице между максимально или минимально возможной температурой стенок в процессе эксплуатации и наименьшей или наибольшей температурой, при которой фиксируется расчетная схема газопровода (свариваются захлесты, привариваются компенсаторы, производится засыпка газопровода и т.п., то есть когда фиксируется положение статически неопределимой системы). При этом допустимый температурный перепад для расчета балластировки и температуры замыкания должен определяться раздельно для участков различных категорий.

12.2.3.3 Максимальную или минимальную температуру стенок труб в процессе эксплуатации газопровода следует определять в зависимости от температуры транспортируемого газа, грунта, наружного воздуха, а также скорости ветра, солнечной радиации и теплового взаимодействия газопровода с окружающей средой.

Принятые в расчете максимальная и минимальная температуры, при которых фиксируется расчетная схема газопровода, максимально и минимально допустимая температура газа на выходе из КС, должны указываться в проекте.

12.2.3.4 При расчете газопровода на прочность и устойчивость и выборе типа изоляции следует учитывать температуру газа, поступающего в газопровод, и ее изменение по длине газопровода в процессе транспортировки газа.

12.2.4 Весовые нагрузки

12.2.4.1 Весовые нагрузки определяются с учетом веса труб, транспортируемого продукта, противокоррозионного, теплоизоляционного и утяжеляющего покрытий, а также веса грунта засыпки.

12.2.4.2 Погонная весовая нагрузка, МН/м, вычисляется следующими формулами:

- для собственного веса трубы:

(12.2)

где А - площадь поперечного сечения трубы (стали), м2;

g - ускорение свободного падения, м/с2;

- веса изоляционного (противокоррозионного) покрытия:

(12.3)

где D ins - диаметр газопровода с учетом слоя изоляционного (противокоррозионного) покрытия, м, вычисляют по формуле

(12.4)

где D - диаметр газопровода наружный, м;

γins - плотность изоляционного покрытия, кг/м3;

t ins - толщина слоя изоляционного покрытия, м;

- веса теплоизоляционного слоя:

(12.5)

где D - диаметр газопровода с учетом слоев изоляционного покрытия и теплоизоляции, м, вычисляют по формуле

(12.6)

где γt.r - плотность теплоизоляционного материала, кг/м3;

- веса перекачиваемого газа:

(12.7)

где R d - расчетное давление, Н/м2;

R g - газовая постоянная, Дж/(кг·К);

Z - коэффициент сжимаемости газа;

Т g - температура (абсолютная) газа, К;

D i - внутренний диаметр газопровода, м, вычисляемый по формуле

(12.8)

где t nom - толщина стенки газопровода, номинальная, м;

- допускается вычислять погонный вес природного газа q gas, МН/м, по приближенной формуле

(12.7а)

- вес заполняющего газопровод конденсата q соnd МН/м (при возможном его образовании):

(12.9)

где γcond - плотность конденсата, кг/м3;

- выталкивающей силы воды q w, МН/м, для полностью погруженого в воду газопровода при отсутствии течения воды

(12.10)

где D lin - наружный диаметр трубы с учетом изоляционного покрытия и футеровки, м;

γw - плотность воды с учетом растворенных в ней солей, кг/м3.

12.2.5 Упругий изгиб газопровода

12.2.5.1 Напряжения от упругого изгиба учитываются при проверке прочности газопровода.

12.2.5.2 Нагрузки, возникающие при пропуске ВТУ по надземным газопроводам, следует также относить к функциональным. Для надземных газопроводов, подвергающихся пропуску ВТУ, следует дополнительно производить расчет на динамические воздействия от ВТУ.

Природные нагрузки

12.3.1 К природным (и техногенным) относятся нагрузки, обусловленные внешними факторами, за исключением случаев, когда нагрузки должны быть отнесены к функциональным или случайным ввиду малой вероятности их возникновения:

- грунтовые, вызванные пучением и просадками грунта или неравномерной осадкой, оползнями и др.;

- нагрузки от ветра, снега или обледенения (для надземных трубопроводов);

- нагрузки от автомобильного и железнодорожного транспорта;

- нагрузки от возможного смещения конструкций трубопровода.

12.3.2 Ветровую нагрузку на надземные газопроводы q Hsta, МН/м, вычисляют как горизонтальную погонную нагрузку от статического действия ветра:

(12.11)

где w m и w p - нормативные значения соответственно средней и пульсационной составляющей ветровой нагрузки, Н/м2, определяются согласно пунктам 6.3 и 6.7 СНиП 2.01.07-85* [22], используемое при этом нормативное значение ветрового давления w 0 следует принимать по таблице 5 этих же норм в зависимости от ветрового района;

D l.p - диаметр газопровода с учетом слоев изоляционного покрытия и теплоизоляции, м, определяемый по формуле (12.6).

12.3.3 Погонную вертикальную нагрузку на надземный газопровод от веса снега или обледенения q s.i, МН/м, вычисляют по формуле

(12.12)

где q s - погонная нагрузка от снега, МН/м;

q i - погонная нагрузка от обледенения, МН/м.

Нагрузку от снега q s, МН/м, вычисляют по формуле

(12.13)

где С с - коэффициент перехода от веса снегового покрова на единицу поверхности земли к снеговой нагрузке на единицу поверхности трубопровода, который принимается равным 0,4 для одиночно прокладываемого трубопровода;

s 0 - нормативное значение распределенного веса снегового покрова, принимаемое согласно таблице 4 СНиП 2.01.07-85* [22] в зависимости от снегового района, МН/м2;

D t.p - диаметр газопровода с учетом слоев изоляционного покрытия и теплоизоляции, м.

Нагрузка от возможного обледенения газопровода q i МН/м, вычисляется по формуле

(12.14)

где b - толщина слоя гололеда, принимаемая согласно таблице 12 СНиП 2.01.07-85* [22] в зависимости от района гололедности, м;

D t.p - диаметр газопровода с учетом слоев изоляционного покрытия и теплоизоляции, м.

Строительные нагрузки

12.4.1 Строительные нагрузки - нагрузки, возникающие при строительно-монтажных работах и испытаниях трубопроводной системы, в т.ч. собственный вес испытательной среды. К строительным следует относить также нагрузки при хранении и транспортировке труб и трубных плетей.

Примечание - К строительным нагрузкам следует также относить возможное образование вакуума при вакуумной осушке газопровода.

Случайные нагрузки

12.5.1 Случайная нагрузка - нагрузка, возникающая с частотой менее 10-4 в год на километр газопровода. Причинами случайных нагрузок могут быть:

- сейсмическое воздействие;

- взрыв;

- внезапная разгерметизация;

- пожар;

- нестационарный режим эксплуатации;

- механические повреждения.

При учете случайных нагрузок следует учитывать как вероятность их возникновения, так и возможные последствия случайных нагрузок.

12.5.2 Для газопроводов, прокладываемых в сейсмических районах, интенсивность возможных землетрясений для различных участков газопроводов определяется согласно СНиП II-7-81* [23], по картам сейсмического районирования и списку населенных пунктов, расположенных в сейсмических районах, с учетом данных сейсмомикрорайонирования.

12.5.3 При проведении сейсмического микрорайонирования необходимо уточнить данные о тектонике района вдоль всего опасного участка трассы в коридоре, границы которого отстоят от газопровода не менее чем на 15 км.

12.5.4 Расчетная интенсивность землетрясения для наземных и надземных газопроводов назначается согласно СНиП II-7-81* [23].

Расчетная сейсмичность подземных магистральных газопроводов и параметры сейсмических колебаний грунта назначаются без учета заглубления газопровода как для сооружений, расположенных на поверхности земли.

Сочетания нагрузок

12.6.1 При расчетах на прочность и устойчивость должно быть учтено наиболее неблагоприятное сочетание функциональных, природных, строительных и случайных нагрузок, которые могут возникнуть одновременно.

12.6.2 Нагрузки и воздействия, связанные с осадками и пучениями грунта, оползнями, перемещением опор и т.д., должны определяться на основании анализа грунтовых условий и их возможного изменения в процессе строительства и эксплуатации газопровода.


Поделиться с друзьями:

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.013 с.