Приготовление неньютоновской жидкости — КиберПедия 

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Приготовление неньютоновской жидкости

2021-03-17 157
Приготовление неньютоновской жидкости 0.00 из 5.00 0 оценок
Заказать работу

Приготовление крахмального раствора.

Цель: получить неньютоновскую жидкость и проверить на опытах, как она ведёт себя в обычных условиях.

 

Реактивы: крахмал картофельный, вода.

Посуда: глубокая чашка, металлическая палочка.

 

Ход работы

Для приготовления мне нужны крахмал (картофельный или кукурузный) и вода. Пропорция зависит от качества крахмала и обычно составляет от 1:1 до 1:3 в пользу воды. В результате смешивания мы получаем нечто типа киселя, обладающего интересными свойствами.

Заметил, если мешать быстро, чувствуется сопротивление, а если медленнее, то нет. Получившуюся жидкость можно налить в руку и попробовать скатать шарик. При воздействии на жидкость, пока мы будем катать шарик, в руках будет твердый шар из жидкости, причем, чем быстрее и сильнее мы будем на него воздействовать, тем плотнее и тверже будет наш шарик. Как только мы разожмем руки, твердый до этого времени шар тут же растечется по руке. Связано это будет с тем, что после прекращения воздействия на него, жидкость снова примет свойства жидкой фазы. (Приложение 2)

Опыт 1 с резкими движениями внутри жидкости.

Чтобы провести данный опыт и лучше понять свойства данной жидкости, нужно опустить руку в жидкую массу и резко попробовать сжать пальцы внутри нее. Также можно резко попробовать вытащить руку из нее. Главное все это делать быстро. В ходе проведения опыта можно заметить, что при резком воздействии на неньютоновскую жидкость она моментально крепчает. Таким образом, резко сжать внутри нее пальцы не получится, и резко вынуть руку тоже, несмотря на то, что при медленном погружении в нее руки, мы чувствовали обыкновенную жидкость. (Приложение 3)

Опыт 2 с ударом по жидкости.

Итак, при медленном погружении сжатого кулака в неньютоновскую жидкость, она проявляет свойства обычной жидкости, и не оказывает сопротивления. Но если по ней резко ударить, то она мгновенно превратится в более плотное вещество, и, пробить ее не получится. (Приложение 4)

Опыт 3   с жидкостью и шариками.

При резком броске пластмассового шарика в неньютоновскую жидкость вещество становится твердым, и шарик ударяется о его поверхность, но потом вещество вновь становится жидким, и шарики немного тонут. (Приложение 5)

Опыт 4  с переливанием неньютоновской жидкости.

При переливании неньютоновской жидкости из одного сосуда в другой она вновь проявляет как свойства твердого вещества, так и жидкого. При вытекании жидкости из одного сосуда, как и в момент своего падения, она остается жидкой, но при взаимодействии с поверхностью другого сосуда, или любой другой твердой поверхностью она на секунды столкновения становится твердой, и вновь растекается. (Приложение 6)

Опыт 5 Наблюдение "эффекта Кайе"

В 1963 году английский инженер Алан Кайе (Alan Kaye) проводил опыты на основе неньютоновских жидкостей и наблюдал интересные явления. Ученый заметил, что если жидкость вливать с небольшой высоты в такую же жидкость или в жидкость с одинаковой плотностью и вязкостью, то струйка не растворяется в жидкости, а как бы отскакивает от самой себя. Это явление назвали "эффект Кайе" (или «эффект Кея»).

Реактивы: шампунь во флаконе.

Посуда: глубокая широкая чашка, металлическая пластина.

Ход работы

Установили чашку на ровную поверхность и налили в неё шампунь слоем в 3 см. Из флакона выливали в чашку шампунь тонкой струйкой с высоты 20-25 см от поверхности чашки. По мере того как жидкость падала с высоты 20 см вниз в себе подобную жидкость, мы наблюдали, что струйка жидкости, падающая вниз, начинала отскакивать от поверхности жидкости находящейся внизу. В месте падения струйки образуется небольшой бугорок. После отскакивания струйки бугорок исчезает. Эффект имел очень короткую продолжительность. Известно, что это явление обусловлено вязкостью жидкости, однако точно причины его возникновения пока не ясны. Найдено несколько объяснений этому эффекту.

1) Скачок жидкости может быть вызван резким изменением вязкости струйки в тот момент, когда она ударяется о поверхность жидкости. Жидкости, в которых наблюдается эффект Кея, являются тиксотропными, то есть их вязкость уменьшается под действием деформации сдвига. В падающей струйке вязкость жидкости достаточно высока. Когда же жидкость ударяется о бугорок на поверхности, резкое изменение скорости приводит к возникновению больших деформаций сдвига, и вязкость жидкости уменьшается. Так как жидкость, кроме того, упруга, струйка отскакивает от бугорка.

 2) Проникая внутрь жидкости, находящейся в чашке, струйка несет в себе запас кинетической энергии, а поскольку жидкость имеет высокую плотность и вязкость, и по закону сохранения энергии, кинетическая энергия, внесенная в уравновешенную систему, должна, куда-то перейти, и выстреливает такой же струйкой из жидкости.

 3) Струя жидкости, падающая вниз, не может пробить поверхностное натяжение верхнего слоя и отскакивает в сторону. Если поставить под струйку металлическую пластину под углом примерно 45° и смочить ее тем же шампунем, то струйка, падающая вниз, будет по наклонной траектории падать, отскакивая пару раз от пластины. (Приложение 7)

Опыт 6 Течение вязкой жидкости

Реактивы: мёд.

  Посуда: тарелка.

 Ход работы

 Мёд лили из банки в тарелку с высоты от 5 до 20 см.

Наблюдали: на некотором расстоянии от тарелки струйка жидкости начинает накручиваться колечками или складываться складками, образуя «жидкий канат». Почему возникают такие колечки? Объяснение. Падая и ударяясь о поверхность такой же жидкости в тарелке, струйка сжимается, что заставляет ее выгибаться вбок. При данных условиях струйка не может разорваться; поэтому, если количество падающей жидкости больше, чем может сразу поглотить жидкость, находящаяся внизу, то струйка начинает завиваться. Выяснили, что диаметр и скорость образования «намотки» определяются толщиной струйки: чем толще струйка, тем крупнее кольца или складки, тем медленнее происходит «намотка».

Вывод из серии опытов:

Все изложенные выше опыты демонстрируют нам главное свойство неньютоновской жидкости – способность становиться более вязкой и твердой при резком взаимодействии с ней.

Если на эту жидкость с силой воздействовать, то она приобретает свойства твердого вещества. По этой жидкости можно даже бегать, но если замедлить действие, то человек сразу же погружается в жидкость. Свойства этой жидкости в скором времени планируют использовать для временного ремонта дорожных ям. Что же происходит с неньютоновскими жидкостями? Частицы крахмала набухают в воде и формируются контакты в виде хаотически сплетенных молекул. Эти прочные связи называются зацеплениями. При резком воздействии прочные связи не дают молекулам сдвинуться с места, и система реагирует на внешнее воздействие, как упругая пружина. При медленном воздействии зацепления успевают растянуться и распутаться. Сетка рвется и молекулы расходятся.


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.