Краткий обзор исследований, состояние проблемы, дискуссия — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Краткий обзор исследований, состояние проблемы, дискуссия

2020-11-19 88
Краткий обзор исследований, состояние проблемы, дискуссия 0.00 из 5.00 0 оценок
Заказать работу

Введение

 

С развитием представлений об огромных размерах и большой геологической роли плейстоценовых ледниково-подпрудных озер и их катастрофических прорывов в новейших публикациях стало все более отчетливо обособляться направление научных исследований, которое английский геолог П.Э. Карлинг даже стал называть «потопной седиментологией». В России со середины 90-х годов прошлого века геологические тела, образованные дилювиальными потоками – фладстримами, были отнесены автором к объекту изучения четвертичной гляциологидрологии, основанной на теории дилювиального морфолитогенеза.

Среди главных особенностей режима ледниково-подпрудных озер нужно отметить периодичность их возникновения, но кратковременность существования, поскольку эти озера возникали за счет ледникового подпруживания каналов талого стока в горных котловинах и речного и талого стока на равнинах. Такие озера часто оставляли свои следы в виде отложений и береговых линий в пределах озерных котловин. При достижении критического уровня озера уничтожали частично или полностью ледниковые плотины и катастрофически прорывались, продуцируя сверхмощные по современным земным меркам потопы. Территории влияния этих потопов геологически мгновенно трансформировалась так, что предшествующий рельеф часто полностью изменялся, и образовывались новые, дилювиальные, типы и формы рельефа и отложения. Среди них были выделены дилювиально-эрозионные, дилювиально-эворзионные и дилювиально-аккумулятивные образования.

Уничтоженные механически, ледники-плотины, в соответствие с климатическими условиями, через определенное время вновь стремились блокировать сток, и межгорные котловины и расширения речных долин вновь заполнялись водой до тех пор, пока не были превышены пределы устойчивости ледниковых плотин и высота последних. После этого следовали немедленные очередные сбросы озер. Механизмы таких сбросов могли быть различными. Механизмы подпруживания, как предполагает автор, могли реализоваться почти без исключений одним способом – ледниковыми пульсациями-серджами.

История заполнения межгорных котловин и их прорывов повторялась до тех пор, пока климатические условия не изменялись настолько, что ледники-притоки переставали покидать свои долины и переставали перегораживать главные, магистральные каналы стока. В этом – суть теории дилювиального морфолитогенеза.

Формы и отложения дилювиального морфолитокомлекса всегда находятся в парагенетической ассоциативной связи. Ранее уже приходилось отмечать, что если в Северной Америке, где без малого восемьдесят лет назад появились первые публикации о грандиозных прорывных позднечетвертичных потоках из ледниково-подпрудного озера Миссула, основным доказательством катастрофических прорывов озер были деструктивные формы – ветвящиеся глубокие ущелья и каналы-кули, «исполиновы котлы», а также бары – валы сортированного слоистого галечника, то в горах Сибири, напротив, понимание ритмически неустойчивого режима позднеплейстоценовых котловинных ледниково-подпрудных озер пришло после открытия в горах Алтая, в долинах Башкауса и Большого Улагана и в долинах Чуи и Катуни, рельефа гигантских знаков ряби течения. Именно этот экзотический рельеф, привлекающий к себе внимание почти всех исследователей, работавших в горах Алтая и Тувы, вызвал лавину публикаций, которая в последние годы заметно усилилась.

Понятно, что различная диагностика одних и тех же образований ведет к различным палеоклиматическим реконструкциям. Настоящая работа посвящена проблеме изучения рельефа гигантских знаков ряби преимущественно Центральной Азии. Поэтому автор, как один из первооткрывателей этого рельефа в Евразии, предпринял попытку краткого научного обзора тех основных данных о гигантских знаках ряби течения, которые в настоящее время имеются, акцентируя при этом внимание на материалах по Горному Алтаю, как наиболее изученному. Понятно, что эта задача не может рассматриваться в отрыве от всех других аспектов дилювиальной теории, поскольку и сами гигантские знаки ряби течения являются частью дилювиального морфолитологического комплекса.

 

 


Терминология

 

Слово «катастрофа» в сознании большинства людей связывается с чем-то ужасным. Такое восприятие не имеет физического смысла, хотя в приложении к тем процессам, которые происходят при геологически мгновенных сбросах огромных приледниковых озер, оно справедливо в связи с тем эмоциональным и физическим эффектом, который оказывают на людей все природные катастрофы вообще.

Для характеристики прорывных гляциальных суперпаводков и их влияния на земную поверхность автор принимает короткое и удачное, на его взгляд, определение В.И. Арнольда: «Катастрофы – скачкообразные изменения, возникающие в виде внезапного ответа системы на плавное изменение внешних условий». Хотя в этом выражении также имеются неопределенности, оно представляется вполне корректным и удобным для целей четвертичной гляциогидрологии и геологии.

Катастрофические суперпаводки, продуцированные сбросами озер имеют в разных странах различное название. В России были предложены термины «дилювиальные потоки» и фладстримы. Широко используются также и понятия менее определенные но, по сути, обозначающие то же самое: «гляциальные суперпаводки», «прорывные суперпаводки» и т.д. В англоязычной литературе традиционно применяются как эти последние, так и, в последние годы, «дилювиальные образования», «дилювиальные ландшафты» и т.д.. В самое последнее время М.Г. Гросвальд стал называть гидросферные катастрофы просто «потопами».

Научный обиход, в особенности в устных дискуссиях, часто расширяет первоначальное значение многих терминов. В первую очередь это касается народных слов и понятий, описывающих конкретные явления, но приобретших без точного перевода более общий смысл для целых групп явлений и процессов. Вероятно, такую метаморфозу претерпел исландский термин «йокульлауп», обозначавший катастрофические паводки от таяния льда и снега, вызванного извержениями вулканов в ледниковой зоне. Практически вслед за первыми работами об исландских йокульлаупах этот термин стал применяться за рубежом для обозначения катастрофических прорывов любых ледниково-подпрудных озер, что, конечно, нельзя признать терминологически правильным. Тем не менее, приходится считаться с тем, что термин «йокульлауп» в широком значении используется во всем мире, в том числе – и в России.

Распространение во время оледенений ледниково-подпрудных озер разного типа, их систематические прорывы, большие, иногда кардинальные, последствия этих прорывов обусловили целесообразность выделения особого комплекса экзогенных процессов – дилювиальных, создающих дилювиальные формы рельефа и отложения. Дилювиальные процессы рельефообразования это процессы преобразования земной поверхности катастрофическими водными потоками из прорывающихся ледниково-подпрудных озер.

Собственно термин «дилювий», разумеется, анахронизм. Предложенный У. Баклендом в 1823 г., он обозначал буквально то же самое, т.е. потоп, однако потоп совершенно определенный, библейский, «всемирный». Позднее библейский контекст был этим термином утрачен, и он применялся в своем точном значении. В некоторых странах, например в Германии, термин «дилювиальный» употреблялся вплоть до 50-х годов ХХ века как синоним четвертичного периода. В таком понимании он сохранился в некоторых словарях и сейчас с добавлением «устаревший». Наполняя устаревший термин новым содержанием, мы предполагаем, что слово «дилювий», как анахронизм, у специалистов «на слуху», точный перевод этого термина точно соответствует вложенному в него новому содержанию. Термин удобен в пользовании, а по звучанию он хорошо соотносится с названиями многих других генетических типов рыхлых отложений и форм рельефа, таких, например, как аллювий, пролювий, коллювий и др.

Замечания некоторых оппонентов термина о том, что «дилювий» по звучанию можно спутать с «делювием», конечно, заслуживают внимания, но не большего, чем замечания оппонентов А.П. Павлову, сто с лишним лет назад предложившему последний термин в то время, когда все естествоиспытатели мира ассоциировали понятие «дилювий» отнюдь не с Библией, а с оледенениями и с большими массами воды. И именно А.П. Павлов выдвигал жесткие требования к геологической терминологии, подчеркивая, что каждый термин должен определять способ образования данной группы отложений.

В.В. Бутвиловский для обозначения рельефа и отложений, созданных катастрофическими суперпотоками, предложил термин «флювиокатастрофический». Мне уже приходилось отмечать, что хотя смысл предложения вполне прозрачен, этот громоздкий и колючий на слух термин содержит к тому же корни из двух языков: латинского и греческого, что на взгляд автора уж слишком для самовыражения на третьем, своем собственном, русском языке.

Исходя из вышеприведенных формулировок дилювия, геологическая деятельность гляциальных селей также укладывается в рамки комплекса дилювиальных процессов. Селевые потоки гляциального происхождения являются частным случаем дилювиальных процессов. Они также суть временные потоки с похожими гидрографами стока. Однако по своему геологическому эффекту прорывные гляциальные сели также далеки от дилювиальных суперпаводков, как малые формы оледенения, например, каровые или склоновые ледники, далеки от ледниковых систем, покровов и щитов.

При введении новых терминов для описания катастрофических сбросов из приледниковых озер и их последствий мы, вообще говоря, в большинстве случаев используем фонетическую форму привноса в русскую научную лексику слов, уже утвердившихся на западе для соответствующих понятий. Так, термин « скэбленд» открыватель миссульских паводков Дж.Х. Бретц применял, подразумевая буквальное значение английского слова «scab», т.е. «короста, струп». Поскольку слово «долина» не выражало морфологических особенностей густой сети сухих русел, врезанных в Колумбийский скэбленд, Бретц назвал эти русла более точным термином «каналы», после чего вся территория получила название «The Channeled Scabland». Отсюда понятно, что основным аргументом для такого наименования послужили эрозионно- и эворзионно-дилювиальные формы скэбленда, т.е. сеть кули и «сухие водопады». Один из самых характерных элементов скэбленда, известных сегодня, – рельеф гигантских знаков ряби течения, был правильно понят гораздо позже. В горах Южной Сибири крупнейшие каналы стока из приледниковых озер в основном наследовали речные долины. Не они были первыми и главными свидетельствами и доказательствами дилювиального происхождения азиатского скэбленда, хотя именно они во многом определяют его облик. В связи с этим автор предложил для общего обозначения территорий, подвергавшихся воздействию катастрофических гляциальных суперпаводков, название «скэбленд» в определениях, данных ниже.

Из всех дилювиальных образований, очевидно, именно гигантская рябь вызывает наибольшее количество различных терминологических дефиниций. Так, собственно, термин «гигантская рябь течения» представляет собой обычную номинальную дефиницию. Этот термин, употребляемый в основном в США, перешел в качестве переводной формы и в русскую научную лексику. В некоторых странах гигантскую рябь часто называют «дюнами».

Применяя к гигантской ряби течения термин «дюна» следует, на мой взгляд, иметь в виду следующие соображения. Собственно понятие «дюна» было введено в науку о русловых процессах Дж.К. Джильбертом для того, чтобы отличать крупные песчаные волны, по которым могут развиваться дюны, от более мелких форм ряби. Впоследствии термин «дюны» стал использоваться во флювиальной седиментологии очень широко, и, как сказано, употребляется и в настоящее время. Как и речные дюны, гигантская рябь течения, возможно, образовывалась при относительно низком режиме течения с числами Фруда менее 1.0. Однако гигантская рябь течения является преимущественно гравийно-галечниковыми образованиями с участием валунов и крупных глыб и, в отличие от речных дюн и эоловых барханов с прослоями разнозернистых песков, она не имеет мелкой ряби, наложенной на поверхность крупных волн.

Г.И. Мидлтон и Дж.Б. Саузард, отмечая различия между мелкой и крупной рябью, к последней относили мегарябь, дюны и песчаные волны. Эти исследователи не считали отличия разных типов крупной ряби существенными. Выражение «гравийные волны», как синоним гигантским знакам ряби, применяли и другие американские исследователи.

Гигантские волнообразные гравийные формы ложа с гребнями, перпендикулярными направлению течению, классифицировались по иерархической интерпретации Р.Дж. Джексона как мезоформы речного ложа из-за их предполагаемого соответствия с глубиной течения. Но на условных диаграммах фаз форм ложа образования, называемые «дюнами», в отложениях с диаметром частиц грубее 10 мм не образуются.

Наблюдения же поперечных «гравийных волн», образованных на дне подводных каньонов в пределах континентальных склонов на глубинах порядка 2000 м, показывают, что терминологическая категоризация «дюны» тем более может быть очень неточной. Рельеф гигантских знаков ряби течения, открытый на Алтае и в Туве, наряду с давно известными полями этого рельефа в Северной Америке, является отличительным признаком катастрофических гляцигенных паводков.

Однако, несмотря на точное соответствие термина «гигантская рябь течения» его содержанию, употребление этого термина в русском языке не удобно в тех работах, которые посвящены не дилювиальному процессу в целом, а отдельным формам, поскольку в русском языке отсутствует единственное число слова «рябь». В таких случаях, наряду с общим названием, автор предложил применять выражения «дилювиальные дюны и антидюны», что согласуется с используемыми для гигантской ряби терминами, применяемыми, например, в Великобритании и Германии: «giant gravel dunes». Возможно, для полей крупных знаков гигантской ряби удобно применять термин «дилювиальный бархан».

В заключение этого раздела отмечу, что в целом описание и изучение всех аспектов дилювиального процесса вызывают большие терминологические затруднения, разрешение которых, как думается, заключается в широкой междисциплинарной научной кооперации и является, вообще говоря, вопросом времени.

 

Диагностика

 

В настоящее время выявлены сотни местонахождений полей гигантской ряби течения в Северной Америке и в Северной Азии. Приведем здесь краткое описание главных черт этого рельефа и его отложений на ключевых, наиболее посещаемых сегодня, районах Алтая и Тувы с необходимыми ссылками на основные публикации по другим территориям.

Североамериканские местонахожденияисчерпывающе охарактеризованы в работах Дж. Парди, Дж.Х. Бретца и др., В.Р. Бейкера. Эти характеристики являются пионерными и представляются эталонными для сравнения, в связи с чем в дальнейшем мы будем к ним обращаться.

Горный Алтай.

Ключевые местонахождения находятся: 1) в предгорьях Алтая, на поверхности 10–14 метровой левобережной террасы р. Катунь севернее пос. Платово; 2) в Центральном Алтае на поверхности 80–100 метровой левобережной террасе р. Катунь выше по течению устья р. Малый Яломан и 3) на днище Курайской межгорной впадины.

В плане гигантские знаки ряби течения представляют собой систему вытянутых, слабо извилистых гряд или цепочки дюн серповидной формы, ориентированных субперпендикулярно современному простиранию долин. Межгрядовые понижения обычно имеют вытянутую мульдообразную форму. На платовском и яломанском участках такие мульды обычно разделены небольшими перемычками, понижения платовской ряби, открывающиеся к Катуни, трансформированы растущими оврагами. Оврагами часто освоены и разомкнутые мульды в других местонахождениях. Курайская рябь на участках Актру-Тете и правобережьье Тете имеют более вытянутые межгрядовые понижения, хотя и на этих участках длинные, извилистые мульды также часто имеют перемычки с высотой, сопоставимой с высотами гребней паводковых дюн

Поле ряби участка Платово-Подгорное имеет простирание около 350° на север. На этом участке знаки ряби вскрываются рекой почти в поперечном сечении, и можно наблюдать, что соседние дюны почти до деталей повторяют друг друга. Ниже по течению р. Катуни поверхность поля маскируется хвойным перелеском. Сами паводковые дюны залегают на поверхности валунно-галечниковой террасы р. Катунь, отложения которой вскрыты канавами на глубинах более 1 м от подошвы дюн.

Проксимальные склоны дилювиальных дюн, ориентированные навстречу потоку, имеют во всех местонахождениях слабовыпуклые профили. Дистальные склоны имеют слабовогнутые в пригребневой части профили. Проксимальные склоны всегда более пологие и длинные, вогнутые – крутые и короткие. Углы падения проксимальных склонов колеблятся в интервалах 3–11° до 1° в пригребневых участках. Дистальные склоны падают под углами 5–20°. Самые контрастные значения этих характеристик – на поле гигантских знаков ряби Тете.

Длина гряд по простиранию коррелирует с их высотой и может достигать первых километров. В Курайской котловине наиболее крупные цепочки дилювиальных барханов имеют по длинным осям протяженность в несколько сот метров при высоте до 20 м. Самой малой протяженностью обладают паводковые дюны в Центральном Алтае на участке Яломан-Иня и в урочище Кара-Коль в западной части Курайской котловины. Высота гребней ряби участка Платово-Подгорное составляет 230–290 см при средней длине волны около 60 м, меняясь от 45 до 90 м. Современное превышение гряд на яломанском участке относительно межгрядовых понижений составляет около 1,5 м, однако, учитывая, что в понижении шурфом вскрыта более чем 1,5 метровая толща бурых среднезернистых влажных песков, истинная высота дюн и антидюн здесь составляет более 2,5 м. Отношение длины волны дилювиальных дюн к высоте на ключевых участках демонстрируется гистограммой П.А. Карлинга.

Поверхность гряд и межгрядовых понижений покрыта тонким слоем лессовидного суглинка, межгрядовые понижения иногда слабо заболочены. Мощность лессовидного суглинка и на гребнях, и в межгрядовых понижениях – первые десятки сантиметров. На поверхности яломанских и курайских гряд покровных отложений почти нет. В межгрядовых понижениях дилювиального поля Тете под слоем покровных отложений вскрываются бурые пески с мощностью в ряде шурфов до 2 м.

На склонах знаков ряби, реже – на гребнях, на участке Платово-Подгорное залегают сильно выветрелые слабо- и среднеокатанные валуны гранитоидов, диаметр которых может превышать 1 м по длинным осям. В среднем встречается один такой экземпляр на 250 м2, а в обнажениях – на 800 м2. Эти глыбы – одна из форм дилювиальной эрратики. В коренном залегании эти породы имеются несколькими десятками километров выше по долине Катуни.

На поверхности курайских дилювиальных дюн также можно обнаружить как отдельные экземпляры, так и целые поля грубообломочного неокатанного материала, размерами более 6 м по длинным осям. Эти глыбы тяготеют к вершинным поверхностям дюн, очень слабо «утоплены» и состоят, преимущественно, из метаморфизованных сланцев, гнейсов, гранито-гнейсов и крупнозернистых порфировидных гранитов. Такой петрографический состав глыб не характерен для пород бассейнов Актру и Тете. Эти глыбы являются дропстоунами и несут большую палеогидрологическую информацию.

В строении знаков ряби участвуют хорошо промытые галечниково-мелковалунные отложения с присутствием крупнозернистых буроватых полимиктовых песков. Редко попадаются маломощные линзы таких песков, длиной в несколько десятков сантиметров. В песчанистых линзах намечается тонкая косая слоистость за счет чередования более- и менее крупнозернистого материала. Крупнообломочный материал имеет среднюю и хорошую окатанность, галька, напротив, слабо окатана, имеет дресвянистый облик. По данным Г.Г. Русанова в кернах и разрезах курайской ряби Тете во всех прослоях мощностью 0,1–1,0 м заполнитель представлен мелкой угловатой галькой и гравием. В заполнителе полностью отсутствует глинистая и алевритовая фракции, так же, как и в составе платовской ряби, очень незначительно содержание крупнозернистого песка. В некоторых прослоях песок отсутствует.

В составе валунной и грубогалечниковой фракций ряби Тете В.П. Парначевым доминируют микрограниты, базальты, эпидот-хлорит-кварцевые метасоматиты, микродиориты, андензиты. Петрографический состав галечникового материала однообразнее – это преимущественно обломки метаморфических сланцев с участием перечисленных выше пород. Размер валунов не превышает 0,5 м.

Отложения во всех местонахождениях ряби очень рыхлые и сухие. Г.Г. Русанов отмечает отсутствие даже гигроскопической влаги, которая появляется только в очень небольшом количестве на глубинах 10–15 м в основании отложений курайской ряби, залегающей на плотно сцементированных суглинистых галечниках. Нижние грани обломков во всех местонахождениях имеют толстую карбонатную пленку, а в яломанском местонахождение некоторые обломки полностью одеты в карбонатную «рубашку».

Обломочный материал во всех местонахождениях обладает диагонально-косой слоистостью, в целом согласной падению дистального слоя. Часто к пригребневой части гряд тяготеет «армирующий» грубопесчано-галечниковый слой, выклинивающийся везде к средним частям склонов. Слоистость обусловлена различным гранулометрическим составом горизонтов, мощность которых составляет 0,1 – 0,7 м. Относительно более грубозернистые слои в среднем вдвое мощнее мелкозернистых. Концентрация валунного материала и крупной гальки возрастает в нижних частях разрезов.

Наличие такой слоистости – характерная особенность строения паводковых дюн и антидюн. В.Р. Бейкер, обобщив материалы предыдущих исследователей и свои собственные, писал, что слоистость галечников, слагающих знаки ряби, всегда повторяет падение «подветренного» склона гряд, составляя в среднем около 20° при максимуме в 26–27°. Для мелкой песчаной ряби этот факт отмечен во многих специальных работах.

Гигантские знаки ряби в долине Башкауса ниже устья р. Кубадру в 1982 г. впервые описал В.В. Бутвиловский. Их морфология и строение не отличаются от вышеописанных. Высота дилювиальных дюн варьирует от 1,5 до 8 м, длина ряби по простиранию – 25–30 м. Гряды сложены косослоистыми щебнистыми галечниками, почти не содержащими тонкого цемента. Пористость отложений в стенках канав достигает 20%. Для башкаусской ряби характерны наклонные горизонты мелких и средних валунников и дресвяно-галечниковые, чередование которых подчеркивает слоистость, согласную падению дистального слоя. Длинные оси обломков ориентированы по течению, а их наклон также согласен наклону прослоев.

Проксимальные склоны имеют падение 4–12°, а дистальные – 15–35°. Резкая асимметрия склонов подчеркивается характерным выпуклым профилем «китовой спины» у проксимальных склонов. На поверхности пологих склонов также часто залегают крупные слабо обработанные дилювиально-эрратические глыбы.

В целом на Алтае гигантская рябь известна во всех крупных долинах от предгорий до высокогорья. В.В. Бутвиловский закартировал несколько полей гигантских знаков ряби в бассейнах рр. Башкаус и Большой Улаган, а также упомянул, что обнаружил гигантскую рябь и в долине р. Чулышман выше пос. Коо. Общеизвестны поля гигантской ряби в предгорьях на правобережье р. Катунь в районе пос. Чуйский, на участке Платово-Подгорное, в районе пос. Элекманар, в Яломанской впадине, в Курайской впадине, в Чуйской котловине на правом берегу р. Чаган-Узун в «тени» высокого эрозионного останца и во многих других местах. Поэтому на рисунке показаны лишь основные местонахождения этого рельефа.

Не совсем понятным является отсутствие дилювиальных дюн в долинах бассейна Джазатера-Аргута. Одним из не очень, впрочем, удовлетворительных объяснений может служить их морфология – глубокие относительно узкие каналы, где рыхлые отложения уничтожались позднейшей, возможно – дилювиальной, эрозией. Другая возможная причина – малая изученность с дилювиальных позиций в связи с малой, относительно Катуни и Чуи, посещаемостью. Думается, что гигантские знаки ряби течения имеются в Самахинском расширении р. Джасатера.

Тувинские местонахождения

О верхнеенисейских полях гигантских знаков ряби сообщали еще в начале 1980-х годов М.Г. Гросвальд, Н.В. Лукина и Ю.П. Селиверстов. Позднее Б.А. Борисов и Е.А. Минина подробно описали все поля ребристого рельефа и диагностировали его как «рельеф ребристой морены», или «рельеф стиральной доски». Последнее может напоминать обсуждаемые образования, но лишь в том случае, если гофры стиральной доски закономерно асимметричны.

В 1987 году М.Г. Гросвальд впервые кратко описал грядовый рельеф на берегах верхнего Енисея как гигантскую рябь и представил его фотографию на 30-метровой террасе р. Ка-Хем выше Кызыла. М.Г. Гросвальд связал образование гигантских знаков ряби в долине Ка-Хема – Улуг-Хема с катастрофическими прорывами Дархатского ледниково-подпрудного озера. Позднее гигантские знаки ряби течения здесь описала Н.В. Лукина.

В 2002 г. долины Верхнего Енисея посетили участники полевой конференции комиссии INQUA GLOCOPH, в которой, в частности, принимали участие знатоки североамериканского скэбленда В.Р. Бейкер и Г. Комацу, а также палеогеографы, седиментологи и гидрологи из Австралии, Южной и Северной Америки, Великобритании и Европы. Этой конференцией, в которой участвовал и автор, руководил А.Ф. Ямских. Группа посетила все доступные поля гигантских знаков ряби по Ка-Хему – Улуг-Хему. В целом, тувинская рябь принципиально не отличается от таковой на Алтае и в Северной Америке и представляет собой следующее.

Дилювиальные дюны и разделяющие их ложбины имеют изогнутую и извилистую в плане форму. Профили паводковых дюн асимметричны, выпуклые дистальные склоны ориентированы вверх по долинам и имеют падение около 20°, проксимальные склоны падают под углами 3–5°. Длина гряд по простиранию изменяется от сотен метров до нескольких километров при ширине волны от 5 до 150 м. Высота волны у паводковых дюн в долине Улуг-Хема – до 10 м, обычно – около 5 м. Межгрядовые западины, как и на алтайской ряби, часто разделены перемычками, причем, как отмечает М.Г. Гросвальд грядовый рельеф местами нередко переходит в сетчато-ячеистый типа рыбьей чешуи, или в волнисто-грядовый. У денудационных останцов гряды круто изгибаются, как бы обтекая препятствия. На поверхности гряд в привершинной части обычны крупные, более 2 м в диаметре, глыбы долеритов и базальтов.

Гигантская рябь Верхнего Енисея почти везде подрезается рекой, что позволяет изучать ее строение. Она состоит из косослоистых хорошо окатанных мелковалунных галечников с дресвяно-щебнистым и крупнопесчаным заполнителем. Слоистость согласна дистальному склону. Порода рыхлая и сухая.

Как уже отмечалось, тувинские поля гигантской ряби течения уже много лет наблюдаются и анализируются с точки зрения палеогидрологической информативности. Однако, как ни странно, такого большого внимания, как на Алтае и в Америке, тувинская рябь к сожалению пока не привлекла.

Тем не менее, есть основания говорить о том, что гигантские знаки ряби распространены гораздо шире, чем это показано на пионерной схеме М.Г. Гросвальда. В частности, А.В. Мацера упоминает о широком распространении в Тоджинской котловине «сетчато-ячеистых озов», образование которых он связывает с распадом оледенения в котловине и циркуляцией талых вод среди массивов «мертвого льда». Вероятно, речь может идти о гигантских знаках ряби течения во впадине, что признал и сам автор в устном общении.

Определения

 

Гигантская рябь течения – это активные русловые формы рельефа высотой до 20 м, образованные в околотальвеговых участках пристрежневых частей магистральных долин дилювиального стока. В плане образуют серповидные или извилистые гряды длиной от первых метров до километров, разделенные мульдообразными понижениями с частыми перемычками. Гигантские знаки ряби течения состоят из косослоистых промытых гравийно-галечниковых отложений с участием окатанных валунов и глыб. Гигантские знаки ряби являются морфологическим и генетическим макроаналогом мелкой песчаной ряби течения. Гигантские знаки ряби течения имеют асимметричную в поперечном профиле форму «китовой спины», где более пологий слабовыпуклый к гребню склон обращен навстречу течению палеопотока, а более крутой, слабовогнутый в пригребневой части, склон, находится в зоне относительной русловой тени.

Гигантская рябь течения является важнейшим звеном группы аккумулятивных форм парагенетической ассоциации дилювиального морфолитокомплекса горных и равнинных скэблендов.

Скэбленд – это территории ледниковой и приледниковой зон, подвергающиеся или подвергавшиеся ранее многократному воздействию катастрофических паводков из ледниково-подпрудных озер, оставивших оригинальные эрозионные, эворзионные и аккумулятивные природные образования, по которым возможно определить гидравлические параметры водных потоков, реконструировать историю скэбленда и дать прогноз. Скэбленд – это площадь, рассеченная параллельными ложбинами, изобилующая каплевидными в плане холмами, водобойными котлами и следами кавитации; геоморфологический ландшафт, созданный гидросферной катастрофой.

Определения «скэбленда» возможно расширить в связи с марсианскими открытиями и в связи с разработкой геофизического эффекта подледных извержений вулканов. В этом аспекте происхождение скэблендов целесообразно связывать также и с внезапным таянием криосферы и катастрофическими прорывами вод под мерзлотой и между ее слоями как на Земле, так, в частности, и на планете Марс.


Палеогидрология

Только на территории Горного Алтая общая площадь ледниково-подпрудных озер, подсчитанная по высотному положению сохранившихся береговых линий, спиллвеев и кровле озерных отложений, составляла в позднем плейстоцене не менее 27 тыс. км2, а суммарный объем достигал 7, 3 тыс. км3. В целом же в горах Южной Сибири по предварительным оценкам эти параметры составляли, соответственно, 100 тыс. км2 и 60 тыс. км3.

Самыми крупными ледниково-подпрудными озерами из изученных были Чуйское и Курайское, которые на определенном этапе их эволюции, на стадиях деградации последнего оледенения, представляли собой единый Чуйско-Курайский ледниково-подпрудный водоем. Обнаруженные во время полевых работ 1984 г. на абсолютных отметках свыше 2400 м новые перевалы-спиллвеи из Курайской котловины в бассейн р. Чаган-Узуна и из Чуйской – в бассейн р. Башкауса, а также комплекс дилювиальных валов на перевале Кызыл-Джалык – Кызыл-Чин и Кызкынор, показали, что рекордные объемы Чуйско-Курайской системы ледниково-подпрудных озер могли достигать 3500 км3, т.е. были гораздо больше максимальных объемов оз. Миссула.

Характерные для горных систем Центральной Азии большие межгорные котловины, окруженные высокими хребтами, несущими мощное оледенение, в ледниковое время представляли собой систему сообщающихся водоприемников, сток из которых осуществлялся по крупнейшим дренажным системам, на Алтае – по долинам Чуи, Чулышмана, Башкауса, Катуни, Бии, и, вероятно, Джасатера-Аргута. Это установлено по комплексу дилювиальных образований в этих долинах, но главным образом – по местонахождениям рельефа гигантских знаков ряби течения.

В случае повышенной мощности ледниковых плотин в каналах стока регулирование запасов воды в водоприемниках происходило путем частичной водоотдачи через дренажные каналы низших порядков – перевальные седловины в соседние бассейны. Сброс части вод через спиллвеи Тобожок-Башкаус должен был вызывать катастрофическое опорожнение ледниково-подпрудных озер в долинах рр. Башкауса, Улаганов и Кубадру. Прорывы Чуйского, Курайского или Уймонских озер провоцировали сбросы воды из Яломанской впадины. Эта озерно-дренажная сеть была чрезвычайно динамичной. Каждый очередной сброс или всех озерных вод, или их излишков немедленно компенсировался интенсивным талым стоком с ледников горного обрамления.

Короткопериодические опорожнения и заполнения котловин накладывались на озерно-ледниковые макроритмы длительностью в десятки тысяч лет, на всех этапах эволюции озер за исключением тех промежутков времени, когда поверхность озер вовлекалась в область питания ледников и возникали наледные ледоемы и «пойманные озера». На начальных и конечных стадиях оледенений, когда ледниковые плотины были маломощными и неустойчивыми, опорожнения происходили за счет прорывов или всплывания плотин. В остальных случаях излишки воды сбрасывались через спиллвеи, а также поверх плотин, которые в итоге опять-таки прорывались.

В магистральных долинах стока из некоторых котловин имеются фрагменты отложений подпруживавших озера ледников. Эти морены приурочены к створам участков прорыва на разных гипсометрических уровнях каналов при выходе из котловин. Фрагменты морен встречаются и на бортах каналов стока ниже участков прорыва. Такие образования специально изучались автором в долине Чуи между Чуйской и Курайской впадинами, ниже Курайской впадины, на склонах в урочище Баротал, в долине р. Катуни ниже урочища Сок-Ярык, в долине р. Чулышмана, в долине р. Ванча в Горном Бадахшане и в других местах. В.В. Бутвиловский и Г.Г. Русанов изучали эти образования в бассейне р. Башкауса, а М.Г. Гросвальд – в большинстве ледниковых районов мира.

Противники теории дилювиального морфолитогенеза утверждают, что если бы ледниково-подпрудные озера сбрасывались катастрофически, то дилювиальные потоки эродировали бы весь рыхлый материал в нижележащих долинах.

Во-первых, иной, не катастрофический, сценарий разгрузки ледниково-подпрудных озер в настоящее время неизвестен. Во-вторых, многочисленные современные примеры в самых разных районах планеты показывают, что ледниково-подпрудные озера способны продуцировать катастрофические паводки и без полного уничтожения подпруживающих ледников и их фронтальных морен.

Очевидно, что и сбросы Чуйского, Курайского, Уймонского и других озер в направлении магистральных долин на стадиях последней дегляциации, когда озера уже не достигали максимальных объемов в связи с уменьшением талого стока и маломощностью плотин, происходили главным образом по внутри- и окололедниковым каналам и полостям, а также – по подледниковым спиллвеям. Полного уничтожения плотин на этих этапах не происходило.

Таким образом, например, было спущено в сентябре 1982 г. оз. Стрэндлайн на Аляске. Это озеро имело объем 7 ´ 108 м3. Скорости дилювиального потока были оценены авторами статьи в 14 м/с. После катастрофического сброса озера, которых длился 5 часов, внутриледниковые каналы стока оставались открытыми еще около года, после чего закрылись.

У. Мэтьюз сообщает о механизме катастрофического прорыва ледниково-подпрудного оз. Саммит в декабре 1965 г.. Это озеро было спущено по внутриледниковому туннелю правильно формы с максимальным диаметром 13,1 м и длиной почти 13 км. Максимальный расход воды составлял 3200 м3/с.

Ярким примером обсуждаемого механизма катастрофических сбросов ледниково-подпрудных озер является долина р. Ванч на Памире. Верховья этой долины буквально завалены протаивающим моренным материалом – реликтом многочисленных подвижек ледника Медвежий. В 3 – 4 км от устья р. Дустироз вниз по р. Ванч долину почти перегораживает хорошо сохранившийся конечно-моренный комплекс ледника Русского географического общества. Этот комплекс представляет собой, по существу, активный каменный глетчер, под моренным чехло


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.064 с.