Методы изучения всасывания у человека. — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Методы изучения всасывания у человека.

2020-08-20 180
Методы изучения всасывания у человека. 0.00 из 5.00 0 оценок
Заказать работу

Методы изучения всасывания у человека.

1. По скорости возникновения фармакологического эффекта (никотиновая кислота - покраснение кожи лица).

2. Радиоизотопный метод (меченые вещества переходят из кишечника в кровь).

    

  Изучение экскреторной функции пищеварительного тракта.

Экскреторную функцию изучают по количеству какого-либо вещества в содержимом различных отделов желудочно-кишечного тракта через определенные интервалы времени после введения этого вещества в кровь.

 

Типы пищеварения (от происхождения гидролиз):

1. Аутолитическое - за счет ферментов, находящихся в пищевых продуктах растительного и животного происхождения.

2. Симбионтное - ферменты вырабатываются бактериями и простейшими данного макроорганизма;

3. Собственное - за счет ферментов, синтезируемых пищеварительным трактом:

а ) Внутриклеточное - наиболее древний тип (не клетки выделяют ферменты, а вещество попадает внутрь клетки и там расщепляется ферментами).

б) Внеклеточное (дистантное, полостное ) - ферменты выделяются в просвет ЖКТ, действуя на расстоянии;

в) Мембранное (пристеночное, контактное) - в слизистом слое и зоне щеточной каймы энтероцитов адсорбированы ферменты (значительно выше скорость гидролиза).

 

   77. Виды моторики пищеварительного тракта…

 

Моторная функция обеспечивает размельчение, растирание, перемешивание пищевого комка, передвижение пищевых масс по пищеварительному тракту и выведение экскрементов.

Процесс жевания обеспечивается поперечнополосатой мускулатурой, перемешивание и перемещение пищевого комка - гладкой мускулатурой.

Разновидности моторной функции пищеварительного тракта:

• Произвольная моторика (акт жевания, дефекации).

• Непроизвольные рефлекторные моторные механизмы (механизмы открытия пилорического и илеоцекального сфинктеров, сфинктера Одди).

• Автоматия отдельных отделов пищеварительного тракта.

Различают несколько видов таких сокращений: тонус, перистальтика, ритмическая сегментация, маятникообразные движения.

Физиологические свойства и особенности гладкой мускулатуры пищеварительной трубки

 

Гладкая мускулатура пищеварительной трубки состоит из гладкомышечных клеток (ГМК). Межклеточные контакты ГМК пищеварительной трубки обеспечивает наличие нексусов. Нексусы - один из типов межклеточных контактов.

ГМК пищеварительной трубки обладают рядом физиологических свойств: возбудимостью, проводимостью и сократимостью.

Особенности возбудимости ГМК пищеварительной трубки:

1. Возбудимость ГМК пищеварительной трубки ниже, чем у миоцитов поперечно-полосатой мускулатуры (ППМ).

2. ГМК пищеварительной трубки обладают спонтанной электрической активностью.

3. Спонтанная электрическая активность (СЭА) ГМК пищеварительной трубки имеет ритмический характер. Спонтанная ритмическая активность ГМК пищеварительной трубки связана с периодической активацией кальциевых каналов ГМК, которая формирует входящий ток ионов Са2+. Это вызывает спонтанное смещение потенциала мембраны от ПП до КУД и формирование ПД. Обычно формируется несколько «пачек» ПД. Различные виды автоматии пищеварительной трубки формируются за счет различных видов СЭА ГМК. СЭА ГМК возникает за счет активации различных типов кальциевых каналов.

 

Особенности проводимости ГМК пищеварительной трубки:

1. небольшая скорость проведения возбуждения;

2. проведение возбуждения через нексусы;

3. распространение возбуждения на соседние ГМК без декремента (ослабления);

4. полный охват возбуждением всех элементов гладкомышечной структуры.

 

Особенности сократимости ГМК пищеварительной трубки. Особенности сократимости ГМК пищеварительной трубки обусловлены особенностью сократительного аппарата ГМК.

 

Виды моторики пищеварительной трубки

Тонус гладкой мускулатуры пищеварительной трубки.

Выделяют:

• базальный тонус всех гладких мышц пищеварительной трубки;

• тонические волны, приводящие в соответствие объем химуса и определенного отдела пищеварительной трубки;

• тоническое сокращение сфинктеров.

Секреция в желудке

Время нахождения пищи в желудке - 3-10 часов. Натощак в желудке находит ся около 50 мл содержимого (слюна, желудочный секрет и содержимое 12-перстной кишки) нейтральной рН (6,0).Объем суточной секреции - 1,5 - 2,0 л/сутки, рН - 0,8-1,5.

Железы желудка состоят из трех видов клеток: Главные клетки – вырабатывают ферменты; Париетальные (обкладочные) - НCl; Добавочные - слизь.

Клеточный состав желез изменяется в различных отделах желудка (в антральном - нет главных клеток, в пилорическом - нет обкладочных).

Пищеварение в желудке преимущественно полостное.

Состав желудочного сока

1. Вода - 99 - 99,5%. 2. Специфические вещества: Основной неорганический компонент - HCl (м.б. в свободном состоянии и связанная с белками). Роль HCl в пищеварении: 1. Стимулирует секрецию желез желудка.2. Активирует превращение пепсиногена в пепсин.3. Создает оптимальную рН для ферментов. 4. Вызывает денатурацию и набухание белков (легче расщепляются ферментами). 5. Обеспечивает антибактериальное действие желудочного сока, а следовательно, и консервирующий эффект пищи (нет процессов гниения и брожения). 6. Стимулирует моторику желудка.7. Участвует в створаживании молока.8. Стимулирует выработку гастрина и секретина (интестинальные гормоны ). 9. Стимулирует секрецию энтерокиназы стенкой 12-перстной кишки.

  3. Органические специфические вещества: 1. Муцин - предохраняет желудок от самопереваривания. Формы муцина ( выделяется в 2-х формах ):

а ) прочно связанная с клеткой, предохраняет слизистую от самопереваривания;

б) непрочно связанная, покрывает пищевой комок.2. Гастромукопротеид (внутренний фактор Кастла) - необходим для всасывания витамина В12.

3. Мочевина, мочевая кислота, молочная кислота. 4. Антиферменты.

Ферменты желудочного сока:

1)В основном - протеазы, обеспечивают начальный гидролиз белков (до пептидов и небольшого количества аминокислот). Общее название - пепсины.

Вырабатываются в неактивной форме (в виде пепсиногенов). Активация происходит в просвете желудка с помощью HCl, которая отщепляет ингибирующий белковый комплекс. Последующая активация идет аутокаталитически (пепсином ). Поэтому больные анацидным гастритом вынуждены до приема пищи принимать раствор HCl для запуска пищеварения. Пепсины расщепляют связи, образованные фенилаланином, тирозином, триптофаном и рядом других аминокислот.

Пепсины:

1. Пепсин А - (оптимум рН - 1,5-2,0) расщепляет крупные белки на пептиды. Не вырабатывается в антральной части желудка. 2. Пепсин В (желатиназа)- расщепляет белок соединительной ткани - желатин (активен при рН меньше 5,0). 3. Пепсин С (гастриксин) - фермент, расщепляющий животные жиры, особенно гемоглобин (оптимум рН - 3,0-3,5). 4. Пепсин D (ре нн ин ) - створаживает казеин молока. В основном - у КРС, особенно много у телят - используется при изготовлении сыра (поэтому сыр на 99% усваивается организмом) У человека - химозин (вместе с соляной кислотой (створаживает молоко)). У детей - фетальный пепсин (оптимум рН -3,5), в 1,5 раза активнее створаживает казеин, чем у взрослых. Створоженные белки молока легче подвергаются дальнейшему перевариванию.

2) Липаза. В желудочном соке содержится липаза, активность которой невелика, она действует только на эмульгированные жиры (например, молока, рыбьего жира). Расщепляются жиры на глицерин и ВЖК при рН 6-8 (в нейтральной среде). У детей желудочная липаза расщепляет до 60% жиров молока.

3) Углеводы в желудке расщепляются за счет ферментов слюны (до их инактивации в кислой среде). Собственных карбогидраз желудочный сок не содержит.

 

Моторная функция желудка

В состоянии покоя через каждые 45-90 минут покоя наблюдаются периодические сокращения - по 20-50 минут (тощаковая периодическая деятельность ). Во время приема пищи и спустя некоторое время - стенка расслаблена (" рецептивное расслабление ").

В желудке есть кардиальный водитель ритма, откуда и идут перистальтические волны (скорость- 1 см/с, время - 1,5 с, волна охватывает - 1-2 см желудочной стенки).

В моторике желудка выделяют в основном 4 вида: 1. Тонус. 2. Перистальтика. 3. Ритмическая сегментация. 4. Маятникообразные движения

1. Тонус - благодаря тонусу желудок охватывает пищевой комок, каким бы маленьким он не был (за счет раздражения механорецепторов желудка).

2. Перистальтика - за счет сокращения продольной и циркулярной мускулатуры желудка пища передвигается из области кардии к пилёрусу.

3. Ритмическая сегментация - сокращение циркулярной мускулатуры делит содержимое желудка на 3-4 сегмента. В каждом из них пищеварение идет во многом обособленно.

4. Маятникообразные движения - осуществляются в пределах сегмента за счет сокращения продольных и косых мышц желудка (участвуют в перемешивании пищи).

Благодаря сочетанию сокращений различных мышц желудка осуществляется перемешивание содержимого желудка и передвижение пищи.

Электрогастрография

Электрогастрография является методом выбора оценки деятельности желудка по его биоэлектрической активности.

Безусловно, интегративная регистрация биопотенциалов гладкой мускулатуры желудка косвенно свидетельствует о моторной деятельности желудка.

Рентгеноскопия и рентгенография желудка позволяют определить форму, величину, положение, подвижность желудка, обнаружить локализацию язвы, опухоли желудка. Помимо этого, рентгенологический метод позволяет определить рельеф слизистой оболочки желудка и его функциональное состояние. Исследование проводится натощак. Для исследования желудка применяют жидкую водную взвесь сульфата бария (100-150 г на стакан воды).

Гастроскопия (фиброгастроскопия) - осмотр желудка при помощи фиброгастроскопа - это мягкий гастроскоп, в котором передача изображения осуществляется через пучки стеклянных волокон толщиной с волос. Также в гастроскопии имеется приспособление для визуальной биопсии, а также для фотографирования и видеосъемки слизистой оболочки желудка.

Этот метод исследования позволяет выявить состояние слизистой оболочки желудка - цвет, мельчайшие изменения поверхности - разрастания, эрозии, язвы. Гастроскопия дает представление и о состоянии сосудов, кровоизлияниях, отделении слизи. С помощью этого метода можно детально изучить рельеф, т. с. характер, высоту, ширину и плотность складок слизистой оболочки желудка, что является ценным дополнением к рентгенологическому исследованию. Путем гастроскопии можно выявить нераспознанные при рентгенологическом исследовании опухоли, язвы, кровоточащие полипы желудка.

 

   80. Пищеварение в 12-перстной кишке…

 

В просвет 12-ти перстной кишки поступает -  

1. Кишечный сок,

2. Сок pancreas.

Кроме того, через общий желчный проток

3. Желчь.

                                Сок поджелудочной железы

Железа смешанной секреции. Сок выделяет в 12-перстную кишку. Пищеварение в 12-перстной кишке преимущественно полостное. За сутки - 1,5-2,5 л панкреатического сока, рН - 7,5-8,8. Из солей - высокое содержание бикарбоната - обеспечивают нейтрализацию кислого желудочного содержимого.

Специфические вещества поджелудочного сока:

1. Панкреатический калликреин - близок по свойствам к плазменному, высвобождает каллидин, идентичный брадикинину, т.е. активируется моторика, расширяются сосуды тонкого кишечника. 2. Ингибитор трипсина - блокирует активацию трипсина внутри железы.

Сок тонкой кишки

Объем суточной секреции - 2,5 л. рН - 7,2-7,5. Пищеварение преимущественно пристеночное. 

1) Специфическими веществами кишечного сока являются щелочные продукты.

  2) Ферменты, содержащиеся в кишечном соке, действуют на уже частично переваренные вещества. Всего - более 20 ферментов. Наиболее значимые:

Протеазы кишечного сока:

1. Энтерокиназа - фермент, активирующий трипсиноген.

2. Три- и дипептидазы (эрипсины )- расщепляют пептиды на аминокислоты.

Липазы содержатся в кишечном соке в незначительном количестве (липаза, фосфолипаза).

Карбогидразы кишечного сока:

Альфа-глюкозидаза расщепляет сахарозу до моносахаридов.

Бета-галактозидаза - расщепляет молочный сахар до глюкозы и галактозы.

Сахараза,

Лактаза,

Мальтаза

Изомальтаза

Гамма-амилаза (фиксирована к стенке кишки).

 

Нуклеазы

РНКаза

ДНКаза

Нуклетидаза. Вызывает дефосфорилирование мононуклетидов.

 

Фосфатазы

   Щелочная фосфатаза

   Кислая фосфатаза

 

Сок толстой кишки

рН сока - 8,5-9,0.

К специфическим веществам сока толстой кишки относится слизь, которая обеспечивает формирование каловых масс.

Собственных ферментов сок толстой кишки не содержит.

Состав сока толстой кишки определяется не только ее железами, но и микрофлорой.

1. Нормальная микрофлора кишечника предохраняет организм хозяина от внедрения и размножения патогенных микроорганизмов (предотвращает процессы гниения (белки) и брожения (углеводы)).  

2. Микрофлора участвует в разложении компонентов пищеварительных секретов (ферментов, желчных кислот).

3. Способна синтезировать витамины К и некоторые витамины группы В.

Основной обмен

Основной обмен - это минимальный обмен веществ, который характеризуется минимальным количеством энергии, которое необходимо для поддержания жизнедеятельности организма в состоянии физического и психического покоя.

Энергия ОО необходима для:

1. Обеспечение базального уровня обмена веществ в каждой клетке.

2. Поддержание деятельности жизненно-важных органов (ЦНС, сердце,

почки, печень, дыхательная мускулатура).

3. Поддержание постоянной температуры тела.

Для определения ОО необходимо соблюдать следующие условия:

- физический и эмоциональный покой,

- "зона комфорта" (см. выше),

- натощак (не менее 12-16 часов после приема пищи, чтобы избежать      

эффекта "специфически-динамического действия пищи", начинается через 1 час после приема пищи, достигает максимума через 3 часа, наиболее сильно повышается при белковом питании (на 30%)),

- бодрствование (во время сна ОО снижается на 8-10%).

Величина основного обмена зависит от:

-пола (у мужчин на 10% больше),

- роста (прямо пропорциональная зависимость), /правило поверхности тела/.

- возраста (до 20-25 лет увеличивается, максимальный прирост - в 14-17 лет, до 40 лет - "фаза плато", затем снижается),

веса (прямо пропорциональная зависимость), правило поверхности тела.

Рабочий обмен

Рабочий обмен - количество тепла, выделяемого при работе.

РО значительно превышает ОО, зависит от вида труда.

Выделяют следующие группы, исходя из интенсивности рабочего обмена:

1. Лица умственного труда (2200-3300 ккал) - решение простых задач   

                                                           повышает ОО на 2-3%.

2. Механизированный труд, сфера обслуживания (2350-3500 ккал).

3. Механизированный труд, сфера обслуживания со значительными

                                  физическими усилиями (2500-3700 ккал).

4. Немеханизированный труд (2900-4200 ккал).

Есть и больше (до 5000 ккал), но это уже каторжный труд.

Методы определения энергетического обмена.

Прямая калориметрия.

Метод основан на улавливании и измерении тепловой энергии, теряемой организмом в окружающее пространство. Измеряется с помощью калориметрических камер (биокалориметров) (по кол-ву Н2О, удельной теплопроводности и разнице температур).

2. Непрямая (косвенная) калориметрия:

Оценка энергозатрат - косвенно, по интенсивности газообмена.

В процессе расщепления - в-во + О2 = СО2 + Н2О + Q (энергия).

Т.е., зная количество поглощенного О2 и выделенного СО2, можно судить косвенно о количестве выделившейся энергии. Интенсивность газообмена характеризуется дыхательным коэффициентом.

Дыхательный коэффициент (ДК) - соотношение между объемом образовавшегося СО2 и поглощенного О2.

- для углеводов ДК=1(С6Н12О6 + 6О2=6СО2+6Н2О + Q),

- для белков - 0,8,

- для жиров - 0,7.

При смешанной пище - ДК - от 0,7 до 1,0, т.е. = 0,85.

Каждому ДК соответствует своё кол-во энергии, которое при этом выделяется (свой Калорический Эквивалент Кислорода. КЭО2).

КЭО2  - количество тепла, которое выделяется в соответствующих

условиях при потреблении организмом 1 л кислорода. Выражается в ккал. Находится по таблице, в зависимости от конкретного ДК.

Для получения показателей газообмена, необходимых для расчета основного обмена, используют следующие методы.

а) метод полного газового анализа - метод Дугласа-Холдейна.

- по количеству и соотношению выделенного СО2 и поглощенного О2,

• менее точный, чем прямая калориметрия, но более точный, чем метод неполного газоанализа

б) метод неполного газового анализа - по оксиспирограмме.

- самый неточный, но самый распространенный,

- позволяет быстро и без больших затрат получить ориентир.результат.

Этапы расчетов энергозатрат по оксиспирограмме:

- количество поглощенного кислорода за 1 минуту.

- ДК=0,85 (априори, усредненный).

- ему соответствует КЭО2 = 4,86 ккал.

- кол-во погл. О2 за 1 мин. x 1440 мин. в сутках = кол-во энергозатрат.

найденный показатель сравниваем с должным ОО, (опред. по таблице).

 

87. Тепловой обмен…

Все живые организмы делятся на:

Гомойотермные - теплокровные (человек и млекопитающие).

Пойкилотермные - холоднокровные

Образующаяся в организме энергия питательных веществ, превращается в тепло (тепловую энергию). Чем интенсивнее скорость обменных процессов в организме, тем больше теплообразование.

Температура тела человека

В тех органах и тканях, где обменные процессы протекают с большой скоростью, образуется большое количество тепла.

Решающую роль в перераспределении тепла между тканями с различной теплопродукцией и предупреждении перегревания играет кровь. Обладая высокой теплоемкостью, кровь содействует выравниванию температур в различных частях тела. Подобным образом, за счет изменения скорости кровотока, осуществляется согревание или охлаждение поверхности тела.

Температура поверхностных тканей ниже, чем температура более глубоких тканей, где она составляет 36,7 - 37,0 0С и ее суточные колебания не превышают 1 0С. Это - "гомойотермное ядро", т.е. ткани, расположенные на глубине 1 см от поверхности тела и глубже. На поверхности же тела суточные колебания температуры больше и она различна на разных участках - "пойкилотермная оболочка" тела человека.

Относительное постоянство температуры сохраняется в большей массе глубоких тканей ("ядро"), если организм находится в среде с температурой 25 - 26 0С - " термонейтральная зона" или " температура комфорта".

При снижении температуры окружающей среды масса глубоких тканей с постоянной температурой ("ядра") уменьшается, при повышении - возрастает.

В течении суток максимальное значение температуры тела наблюдается в 18-20 часов, минимальное - к 4-6 часам утра.

Терморегуляция

Терморегуляция - это совокупность физиологических и психофизиологических механизмов и процессов, направленных на поддержание относительно постоянства температуры тела. Это достигается с помощью баланса между количеством тепла, рассеиваемого организмом за то же время в окружающую среду.

Восприятие температурных раздражений осуществляется:

Холодовыми рецепторами. Количественно расположены больше на поверхности тела, повышает частоту импульсации в ответ на охлаждение и снижают ее в ответ на нагревание.

Тепловыми рецепторами. Количественно расположены больше в гипаталамусе, действуют противоположным, чем холодовые рецепторы, образом.

 Афферентный поток импульсов, поступая в соматосенсорную кору больших полушарий, формирует терморегуляторные реакции.

Механизмы регуляции теплообмена:

Центральные

Эффекторные

Центральные механизмы выполняются, главным образом, центром терморегуляции, локализующимся в медиальной преоптической области переднего гипоталамуса и заднем гипаталамусе, где имеются:

а) термочувствительные нейроны, "задающие" уровень поддерживаемой температуры тела;

б) эффекторные нейроны, управляющие процессами теплопродукции и теплоотдачи./центр теплопродукции и центр теплоотдачи/.

На основе анализа и интеграции непрерывно определяется среднее значение температуры тела и приводится в соответствие фактическая и заданная температура.

Эффекторные механизмырегуляции теплообмена через изменение интенсивности кровотока в сосудах поверхности тела изменяют величину теплоотдачи организма.

Если уровень средней температуры тела, несмотря на расширение поверхностных сосудов, 1)превышает величину установочной температуры, происходит резкое усиление потоотделения. В случаях, когда, несмотря на резкое сужение поверхностных сосудов и минимальное потоотделение, уровень средней температуры становится 2)ниже величины "установочной" температуры, активизируются процессы теплопродукции.

Если, несмотря на активацию обмена веществ, величина теплопродукции становится меньше величины теплоотдачи, возникает гипотермия - понижение температуры тела.

Гипотермия возникает тогда, когда интенсивность теплопродукции превышает теплоотдачу/ способность организма отдавать тепло в окружающую среду/.

В случае продолжительной гипертермии может развиваться "тепловой удар" -

В более легких случаях наблюдается" тепловой обморок",

Как при гипертермии, так и при гипертермии имеют место нарушения основного условия поддержания постоянства температуры тела - баланса теплопродукции и теплоотдачи.

В процессе эволюции в живых организмах выработалась особая ответная реакция на попадание во внутреннюю среду чужеродных веществ - лихорадка.

 Это - состояние организма, при котором центр терморегуляции стимулирует повышение температуры тела. Это достигается перестраиванием механизма "установки" температуры регуляции на более высокую. Включаются механизмы, 1)активирующие теплопродукцию (повышение терморегуляционного тонуса мышц, мышечная дрожь) и 2)снижающие интенсивность теплоотдачи (сужение сосудов поверхности тела, принятие позы, уменьшающей площадь соприкосновения поверхности тела с внешней средой).

Переход "установочной точки" происходит в результате действия на соответствующую группу нейронов преоптической области гипоталамуса эндогенных пирогенов - веществ. вызывающих подъем температуры тела (альфа- и бетта- интерклейкин-1, альфа-интерферон, интерклейкин-6).

Система терморегуляции использует для осуществления своих функций компоненты других регулирующих систем.

Такое сопряжение теплообмена и других гомеостатических функций прослеживается, прежде всего, на уровне гипоталамуса. Его термочувствительные нейроны изменяют свою биоэлектрическую активность под действием эндопирогенов, половых гормонов, некоторых нейромедиаторов.

Реакции сопряжения на эффекторном уровне. В качестве эффекторов в реакциях теплообмена используются сосуды поверхности тела, что обусловлено выполнением более важной гомеостатической потребности организма - поддержания системного кровотока.

А) Когда температура поверхности тела выравнивается с таковой окружающей среды, ведущее значение приобретает потоотделение и испарение пота и влаги с поверхности тела.

Б) Если при подъеме температуры тела, в силу потоотделения теряется жидкость, уменьшается объем циркулирующей крови, то включаются системы осмо- и волюморегуляции ОЦК, как более древнее и более важные для сохранения гомеостаза.

В) При действии как гипер-, так и гипотермии могут наблюдаться сдвиги кислотно-щелочного равновесия.

*При действии на организм высокой температуры активация потоотделения и дыхания ведет к усиленному выделению из организма углекислого газа, некоторых минеральных ионов и за счет гиперпноэ и интенсификации потоотделения развивается дыхательный алколоз, при дальнейшем нарастании гипертермии - метаболический ацидоз.

*При действии гипотермии развивающаяся гиповентиляция является общим эффекторным механизмом, обеспечивающим снижение теплопотерь, поддержание на более низком уровне рН крови соответственно сниженной температуре тела.

 

   88. Гомеостатические функции почек…

Почки выполняют ряд гомеостатических функций:

1. регуляция водно-солевого баланса в организме,

2. поддержание постоянства обьема жидкостей тела,

3. поддержание осмотического давления крови (за счет уровня глюкозы, аминокислот, липидов, гормонов в ней),

4. поддержание ионного состава крови,

5.регуляция кислотно-щелочного баланса (рН мочи - от 4,5 до 8,4, тогда как рН крови - постоянная),

6. образование мочи,

7. выделение продуктов обмена веществ,

8. удаление из крови чужеродных соединений и нейтрализация токсических веществ,

 9. участие в регуляции развития клеток крови в органах кроветворения - синтез эритропоэтинов и лейкопоэтинов,

10. участие в регуляции артериального давления - синтез и выделение в кровь ренина,

11. секреция ферментов и БАВ (брадикинин, простагландины, урокиназа),

12. участие в регуляции свертывания крови.

  В основе перечисленных функций лежат процессы, происходящие в паренхиме почек:

1.Клубочковая фильтрация - фильтрация из плазмы крови в капсулу почечного клубочка безбелковой жидкости - первичной мочи.  

2. Канальцевая реабсорбция - обратное всасывание воды и растворенных в ней веществ из просвета канальца в капиллярное русло.

3. Секреция - процесс активной деятельности канальцевого эпителия, в результате которого из организма удаляются вещества, не фильтруемые из Мальпигиева клубочка в капсулу Шумлянского-Боумена.

4. Синтез новых соединений, поступающих в кровь или мочу (ренин, уромукоид, гиппуровая кислота, некоторые простагландины и т.д.).

Процессы выделения - это конечное звено обмена веществ в организме. В результате него из организма удаляются неиспользуемые продукты обмена.

Другие вещества находятся во вторичной моче в концентрациях, значительно превышающие таковые в плазме крови. Это прежде всего продукты обмена белков/мочевины в 65 раз больше, мочевой кислоты – больше в 12 раз/. В этом проявляется концентрирующая функция почек.

Клубочковая фильтрация.

Клубочковая фильтрация - процесс фильтрации из плазмы крови, протекающей через капилляры клубочка в полость капсулы почечного клубочка воды и растворенных в плазме веществ (за исключением крупномолекулярных соединений). Фильтрация в клубочках осуществляется через поры эндотелия, базальную мембрану, щели между клетками эпителия внутренней стенки капсулы.

Через почечный фильтр проходят молекулы, молекулярная масса которых не превышает 60 тысяч дальтон, при молекулярной массе от этого уровня до 70 тысяч дальтон /гемоглобин, альбумин/ через поры базальной мембран проходят 1-3% молекул, молекулярная масса порядка 80 тысяч дальтон является абсолютным пределом для прохождения молекул через поры мембраны.

Клубочковая фильтрация зависит от:

1. Гидростатического давления крови в капиллярах клубочка (70 мм рт. ст.).

2. Онкотического давления белков плазмы крови (20 мм рт. ст.).

3. Давления в капсуле Шумлянского, т.е. от внутрипочечного давления-(15 мм.рт.ст.).

Клубочковая фильтрация обусловлена разностью между гидростатическим давлением в капиллярах и величинами онкотического и внутрипочечного давления. ФД = ГД - (ОД + ВД), где ФД - фильтрационное давление, ГД - гидростатическое давление, ОД - онкотическое давление крови, ВД - внутрипочечное давление.

Фильтрационное давление составляет 70мм рт. ст - (20мм рт. ст. + 15мм рт. ст.) = 35 мм рт. ст..

В 1 минуту через почки проходит около 1200 мл крови. При этом образуется 120 мл. фильтрата (первичная моча), это скорость клубочковой фильтрации, в норме она составляет 11-125 мл/мин. За сутки образуется 150-170 л. первичной мочи. Содержание неорганических и органических веществ (за исключением белков) в первичной моче такое же, как и в плазме крови.

 

90. Выделительная функция почек. Образование конечной (вторичной) мочи…

Общая характеристика выделительной функции почек.

1. Ряд веществ, находящихся в плазме крови в норме отсутствуют во вторичной моче. Это вещества, которые в норме практически не проходят через почечный барьер, и вещества которые в норме в почках полностью реабсорбируются, это, как правило, биологически ценные необходимые организму вещества /аминокислоты, глюкоза/.

Другие вещества находятся во вторичной моче в концентрациях, значительно превышающие таковые в плазме крови. Это, прежде всего продукты обмена белков /мочевины в 65 раз больше, мочевой кислоты – больше в 12 раз/. В этом проявляется концентрирующая функция почек.

Вещества делятся на

• беспороговые /непороговые/, они выделяют с мочой при любой /низкой,высокой/ их концентрации в крови, к ним относятся мочевина, креатинин, инулин, маннитол и др. и

• пороговые/ все жизненно важные для организма вещества, выделение которых с мочой начинается лишь при достижении некоторого порога/уровня/ их концентрации в крови. Так, если концентрация глюкозы в крови не превышает 150-180 мг%, то она полностью реабсорбируется. Если же превышает эти величины, то часть глюкозы поступает в мочу.

Избирательность реабсорбции.

1.Многие вещества в норме реабсорбируются полностью. Это биологически ценные, жизненно важные вещества: витамины, аминокислоты, низкомолекулярные белки.

2.Реабсорбируется большая часть многих веществ. Это натрий, калий, кальций, хлор и др.

3.Конечные продукты обмена веществ (мочевина, мочевая кислота, аммиак) реабсорбируются в значительно меньшей степени/ выводится 50-70%/. 4.Некоторые вещества (сульфаты, креатинин) полностью выводятся из организма.

Реабсорбция подразделяется на облигатную /обязательную/ и факультативную / не обязательную, зависящую от функционального состояния (проницаемости стенки канальцев, скорости движения жидкости по канальцам, величине осмотического градиента).

Канальцевая реабсорбция   обеспечивается:

1.активным транспортом,2. пассивным транспортом.

Активный транспорт - это транспорт против градиента: электрохимического, концентрационного или осмотического. Активный процесс всегда идет в одном направлении и характеризуется высокой специфичностью в отношении того или иного вещества.       

Виды активного транспорта: а) первично-активный - это перенос вещества против злектрохимического градиента, за счет энергии клеточного метаболизма (реабсорбция натрия и калия происходит при участии фермента - Na+, K+ - АТФ-азы, использующей знергию АТФ), б) вторично-активный - это перенос вещества против концентрационного градиента, но без затраты энергии клеток непосредственно на этот процесс    (реабсорбция глюкозы, аминокислот).

Эти органические вещества из просвета канальца входят в эпителиальную клетку проксимального канальца с помощью специального переносчика, который обязательно должен присоединить Nа+. Комплекс - белок-переносчик + органическое вещество + Nа+ перемещается через мембрану щеточной каймы и уже внутри клетки диссоциирует.

Пассивный перенос осуществляется по принципу облегченной диффузии (реабсорбция Н2О, СО2, хлориды). Пассивный транспорт может осуществляться по электрохимическому градиенту (Н2О) и по концентрационному градиенту (мочевина).

 В проксимальном канальце происходит облигатная реабсорбция, реабсорбируются 65-85 % объема первичной мочи (Н2О), а так же 98% аминокислот, 77% мочевой кислоты, 100% глюкозы, 60% мочевины, 95% витаминов, 85% Nа+, 99% Cl-, 100% К+, 95% РО4, 80% НСО3-

Реабсорбция веществ из проксимальных канальцев в кровоток происходит за счет первичной реабсорбции натрия, которая осуществляется за счет активного транспорта /первично-активный транспорт/,против градиента концентрации. Перенос натрия в области апикальной мембраны частично сопряжен с транспортом глюкозы и с транспортом аминокислот /симпорт/, так же частично связан с обратным транспортом Н+/антипорт/, вторично-активный транспорт. За счет возникающего осмотического градиента происходит пассивная реабсорбция воды, это вызывает концентрированию некоторых веществ в первичной моче, что позволяет им частично реабсорбироваться по градиенту концентрации.

Реабсорбция белков в этом отделе нефрона осуществляется путем пиноцитоза. Первичная моча в конечной части проксимальных канальцах изоосм


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.176 с.