Понятие алгоритма и меры его сложности — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Понятие алгоритма и меры его сложности

2020-04-01 161
Понятие алгоритма и меры его сложности 0.00 из 5.00 0 оценок
Заказать работу

Введение

 

Традиционно в программировании понятие сложности алгоритма связано с использованием ресурсов компьютера: насколько много процессорного времени требует программа для своего выполнения, насколько много при этом расходуется память машины? Учет памяти обычно ведется по объему данных и не принимается во внимание память, расходуемая для записи команд программы. Время рассчитывается в относительных единицах так, чтобы эта оценка, по возможности, была одинаковой для машин с разной тактовой частотой и с незначительными вариациями в архитектуре.

Такой подход сложился исторически и ориентируется прежде всего на научные и инженерные приложения теории алгоритмов: объемы данных значительно превышают размеры самой программы, а программа может выполняться несколько часов. Если в научных и инженерных приложениях большое время вычислений доставляет лишь неудобство пользователям, то в ряде других областей ресурсы настолько критичны, что может возникнуть проблема целесообразности всего проекта из-за неэффективной работы программы. К таким областям относятся системы реального времени (real-time systems). Это основанные на компьютерах системы, которые управляют процессами в реальном мире или обрабатывают информацию, служащую для принятия оперативных решений.

В данной работе будут подробно рассмотрены две характеристики сложности алгоритмов - временная и емкостная. Но не будем обсуждать сложность (длину) текста алгоритма, поскольку она больше характеризует исполнителя (машину), его язык, а не метод решения задачи. Не будем также обсуждать логическую сложность разработки алгоритма - сколько человеко-месяцев нужно потратить на создание программы, поскольку не представляется возможным дать объективные количественные характеристики. Обе эти темы относятся к области компьютерных наук, называемой "технология программирования" (software engineering).


Оптимизация алгоритмов

 

Пока компьютерные науки не накопили достаточно сведений для того, чтобы задача минимизации могла быть поставлена с обычной для математики определенностью. Этому мешает несколько факторов.

Во-первых, сложно сформулировать критерий оптимизации, имеющий одновременно и бесспорное практическое значение и однозначно определенный в математическом плане. Например, можно поставить задачу минимизации числа команд машины Тьюринга - критерий, хорошо определенный математически; но совсем неясно его практическое значение, поскольку вряд ли реальная программа на реальном компьютере будет моделировать машину Тьюринга. Можно поставить задачу минимизации времени выполнения программы на реальной машине - ясный с практической точки зрения критерий. Однако невозможно будет решить задачу оптимизации математическими методами, так как время выполнения зависит (иногда значительно) от архитектуры ЭВМ, а архитектуру современных компьютеров не опишешь небольшим числом параметров. Важно также, что программа, работающая быстрее других на одном компьютере, может оказаться не самой быстрой на другом. Существуют даже специальные программы с общим названием benchmark, предназначенные для оценки архитектур.

Во-вторых, не совсем ясно, что такое сложность задачи. Ее можно было бы определить как минимальную из сложностей алгоритмов, решающих эту задачу. Но существует ли алгоритм минимальной сложности (как убедиться, что найденный алгоритм действительно минимальный или, напротив, не минимальный)? Есть ли к чему стремиться? И насколько труден поиск этого минимума? Эти вопросы связаны с нижней оценкой сложности алгоритмов (а не верхней, как в предыдущих шагах) (5, стр. 89-92).

Можно ли для рассматриваемой задачи доказать, что никакой решающий ее алгоритм не может быть проще этой нижней оценки? Возьмем известную задачу перемножения квадратных матриц. Приведен алгоритм сложности Тa(n) = 3n3 + n2. (8, стр. 199-203) Вероятно, это не лучший алгоритм, но какова оценка снизу? Результирующая матрица имеет n2 элементов. Для вычисления любого элемента нужна хотя бы одна операция однопроцессорной машины - два элемента за одну операцию найти нельзя. Для минимального алгоритма мы получаем неравенства n2 <= Ta, min(n) <= 3n3+n2. Вряд ли n2 - хорошая нижняя оценка, но уже известно, что n3 нижней оценкой не является, так как найдены более быстрые алгоритмы (в частности, алгоритм Штрассена). (8, стр. 211)

Существует несколько самостоятельных аспектов оптимизации программ, из которых выделим два:

- оптимизация, связанная с выбором метода построения алгоритма;

- оптимизация, связанная с выбором методов представления данных в программе.

Первый вид оптимизации имеет глобальный характер и ведет к уменьшению порядка функции сложности - например, замена алгоритма с Тa(V) = O(FS) на алгоритм с Ta(V) = O(V4). Он зависит от того, как задача разбивается на подзадачи, насколько это разбиение свойственно самой задаче или является только искусственным приемом. Общим руководящим подходом здесь может быть последовательность действий, обратная анализу алгоритмов. При анализе по рекурсивному алгоритму строится уравнение, которое затем решается. При оптимизации реализуется цепочка:

Формула, задающая желаемую сложность ->

Соответствующее уравнение (одно из возможных) ->

Метод разбиения задачи на подзадачи.

Второй вид оптимизации, не меняя структуры программы в целом, ведет к экономии памяти и/или упрощению работы со структурами данных, повышению эффективности вспомогательных процедур, обеспечивающих "интерфейс" между прикладным уровнем (на котором мыслим в терминах высокоуровневых объектов - графов, матриц, текстов и т. д.) и машинным уровнем, поддерживающим простейшие типы данных (числа, символы, указатели). Результатом этого обычно является уменьшение коэффициентов при некоторых слагаемых в функции сложности (при удачной оптимизации - при наиболее значимом слагаемом), но порядок функции сложности остается тем же. (7, стр. 204)

Оба вида оптимизации дополняют друг друга и могут применяться совместно.


Заключение

 

Теория алгоритмов - это наука, изучающая общие свойства и закономерности алгоритмов, разнообразные формальные модели их представления. На основе формализации понятия алгоритма возможно сравнение алгоритмов по их эффективности, проверка их эквивалентности, определение областей применимости.

Разработанные в 1930-х годах разнообразные формальные модели алгоритмов (Пост, Тьюринг, Черч), равно как и предложенные в 1950-х годах модели Колмогорова и Маркова, оказались эквивалентными в том смысле, что любой класс проблем, разрешимых в одной модели, разрешимы и в другой.

В настоящее время полученные на основе теории алгоритмов практические рекомендации получают всё большее распространение в области проектирования и разработки программных систем.

Одна из задач, которая обычно ставится при разработке алгоритмов и программ - минимизация требуемых программой ресурсов. Особенно это касается системного программного обеспечения: программ операционной системы, трансляторов, систем управления базами данных и знаний и т. д., т.е. программ, имеющих большое количество пользователей и испытывающих как товар, большую конкуренцию на рынке программных средств.

Теория сложности алгоритмов предлагает достаточные эффективные методы решения поставленной проблемы. Точное решение возможно в подавляющем большинстве практически важных ситуаций.

Однако по-прежнему открыты вопросы, связанные со сводимостью алгоритмов друг к другу и остается нерешенной известная проблема P=NP.

алгоритм сложность оптимизация


Список использованной литературы

 

1. Ахо А., Хопкрофт Дж., Ульман Дж. Структуры данных и алгоритмы: Пер. с англ.: - М.: Издательский дом «Вильямс», 2001 г. -384 с., ил.

2. Вирт Н. Алгоритмы и структуры данных: Пер. с англ. - 2-ое изд., испр. - СПб.: Невский диалект, 2001 г. - 352 с., ил.

.   Карпов Ю.Г. Теория автоматов - СПб.: Питер, 2002 г. - 224с., ил.

.   Кнут Д. Искусство программирования. Тома 1, 2, 3. 3-е изд. Пер. с англ.: Уч. пос. - М.: Изд. дом "Вильямс", 2001 г.

.   Кормен Т., Лейзерсон Ч., Ривест Р. Алгоритмы: построение и анализ. - М.: МЦНМО, 2001 г. - 960 с., 263 ил.

.   Макконнел Дж. Анализ алгоритмов. Вводный курс. - М.: Техносфера, 2002 г. -304 с.

.   Новиков Ф. А. Дискретная математика для программистов. - СПб.: Питер, 2001 г. - 304 с., ил.

.   Романовский И.В. Дискретный анализ. Учебное пособие для студентов, специализирующихся по прикладной математике. - Издание 2-ое, исправленное. - СПб.; Невский диалект, 2000 г. - 240 с., ил.

.   Успенский В.А. Машина Поста. - М.: Наука, 1999 г. - 96 с.

Введение

 

Традиционно в программировании понятие сложности алгоритма связано с использованием ресурсов компьютера: насколько много процессорного времени требует программа для своего выполнения, насколько много при этом расходуется память машины? Учет памяти обычно ведется по объему данных и не принимается во внимание память, расходуемая для записи команд программы. Время рассчитывается в относительных единицах так, чтобы эта оценка, по возможности, была одинаковой для машин с разной тактовой частотой и с незначительными вариациями в архитектуре.

Такой подход сложился исторически и ориентируется прежде всего на научные и инженерные приложения теории алгоритмов: объемы данных значительно превышают размеры самой программы, а программа может выполняться несколько часов. Если в научных и инженерных приложениях большое время вычислений доставляет лишь неудобство пользователям, то в ряде других областей ресурсы настолько критичны, что может возникнуть проблема целесообразности всего проекта из-за неэффективной работы программы. К таким областям относятся системы реального времени (real-time systems). Это основанные на компьютерах системы, которые управляют процессами в реальном мире или обрабатывают информацию, служащую для принятия оперативных решений.

В данной работе будут подробно рассмотрены две характеристики сложности алгоритмов - временная и емкостная. Но не будем обсуждать сложность (длину) текста алгоритма, поскольку она больше характеризует исполнителя (машину), его язык, а не метод решения задачи. Не будем также обсуждать логическую сложность разработки алгоритма - сколько человеко-месяцев нужно потратить на создание программы, поскольку не представляется возможным дать объективные количественные характеристики. Обе эти темы относятся к области компьютерных наук, называемой "технология программирования" (software engineering).


Понятие алгоритма и меры его сложности

 

Во всех сферах своей деятельности, и частности в сфере обработки информации, человек сталкивается с различными способами или методиками решения задач. Некоторые дополнительные требования приводят к неформальному определению алгоритма:

Определение 1.1: Алгоритм - это заданное на некотором языке конечное предписание, задающее конечную последовательность выполнимых элементарных операций для решения задачи, общее для класса возможных исходных данных.

Пусть D - область (множество) исходных данных задачи, а R - множество возможных результатов, тогда мы можем говорить, что алгоритм осуществляет отображение D → R. Поскольку такое отображение может быть не полным, то вводятся следующие понятия:

Алгоритм называется частичным алгоритмом, если мы получаем результат только для некоторых d є D и полным алгоритмом, если алгоритм получает правильный результат для всех d є D.

В теории алгоритмов были введены различные формальные определения алгоритма и удивительным научным результатом является доказательство эквивалентности этих формальных определений в смысле их равномощности. Варианты словесного определения алгоритма принадлежат российским ученым А.Н. Колмогорову и А.А. Маркову (9, стр. 24):

Определение 1. (Колмогоров): Алгоритм - это всякая система вычислений, выполняемых по строго определенным правилам, которая после какого-либо числа шагов заведомо приводит к решению поставленной задачи.

Определение 2 (Марков): Алгоритм - это точное предписание, определяющее вычислительный процесс, идущий от варьируемых исходных данных к искомому результату.

Различные определения алгоритма, в явной или неявной форме, постулируют следующий ряд требований (см.5, стр. 62-63):

- алгоритм должен содержать конечное количество элементарно выполнимых предписаний, т.е. удовлетворять требованию конечности записи;

- алгоритм должен выполнять конечное количество шагов при решении задачи, т.е. удовлетворять требованию конечности действий;

- алгоритм должен быть единым для всех допустимых исходных данных, т.е. удовлетворять требованию универсальности;

- алгоритм должен приводить к правильному по отношению к поставленной задаче решению, т.е. удовлетворять требованию правильности.

Другие формальные определения понятия алгоритма связаны с введением специальных математических конструкций (машина Поста, машина Тьюринга, рекурсивно-вычислимые функции Черча) и постулированием тезиса об эквивалентности такого формализма и понятия «алгоритм» (9, стр. 25-27).

Будем рассматривать в дальнейшем, придерживаясь определений Поста, применимые к общей проблеме, правильные и финитные алгоритмы, т.е. алгоритмы, дающие 1-решение общей проблемы. В качестве формальной системы будем рассматривать абстрактную машину, включающую процессор с фон- Неймановской архитектурой, поддерживающий адресную память и набор «элементарных» операций соотнесенных с языком высокого уровня. В целях дальнейшего анализа примем следующие допущения:

- каждая команда выполняется не более чем за фиксированное время;

- исходные данные алгоритма представляются машинными словами по b битов каждое.

Конкретная проблема задается N словами памяти, таким образом, на входе алгоритма - Nb = N*b бит информации. Программа, реализующая алгоритм для решения общей проблемы состоит из М машинных инструкций по bм битов - Мb = М*b м бит информации. Кроме того, алгоритм может требовать следующих дополнительных ресурсов абстрактной машины:d - память для хранения промежуточных результатов;r - память для организации вычислительного процесса (память, необходимая для реализации рекурсивных вызовов и возвратов).

При решении конкретной проблемы, заданной N словами памяти алгоритм выполняет не более, чем конечное количество «элементарных» операций абстрактной машины в силу условия рассмотрения только финитных алгоритмов.

Определение 3 (2, стр. 107). Трудоёмкость алгоритма. Под трудоёмкостью алгоритма для данного конкретного входа - Fa(N), будем понимать количество «элементарных» операций совершаемых алгоритмом для решения конкретной проблемы в данной формальной системе.

Комплексный анализ алгоритма может быть выполнен на основе комплексной оценки ресурсов формальной системы, требуемых алгоритмом для решения конкретных проблем. Очевидно, что для различных областей применения веса ресурсов будут различны, что приводит к следующей комплексной оценке алгоритма:

 

yA=c1 * Fa(N) + c2 * M + c3 * Sd + c4 * Sr, где ci - веса ресурсов.

 

При более детальном анализе трудоемкости алгоритма оказывается, что не всегда количество элементарных операций, выполняемых алгоритмом на одном входе длины N, совпадает с количеством операций на другом входе такой же длины. Это приводит к необходимости введения специальных обозначений, отражающих поведение функции трудоемкости данного алгоритма на входных данных фиксированной длины (6, стр. 82-85).

Пусть DА - множество конкретных проблем данной задачи, заданное в формальной системе. Пусть D Î DА - задание конкретной проблемы и |D| = N.

В общем случае существует собственное подмножество множества DА, включающее все конкретные проблемы, имеющие мощность N:

обозначим это подмножество через DN: DN = {DÎ DN,: |D| = N};

обозначим мощность множества DN через MDN, т.е. MDN = |DN |.

Тогда содержательно данный алгоритм, решая различные задачи размерности N, будет выполнять в каком-то случае наибольшее количество операций, а в каком-то случае наименьшее количество операций. Ведем следующие обозначения (6, стр. 77):

. FaÙ(N) - худший случай - наибольшее количество операций, совершаемых алгоритмом А для решения конкретных проблем размерностью N:

Ù(N) = max {Fa (D)} - худший случай на DN

 

. FaÚ(N) - лучший случай - наименьшее количество операций, совершаемых алгоритмом А для решения конкретных проблем размерностью N:

Ú(N) = min {Fa (D)} - лучший случай на DN

 

. `Fa(N) - средний случай - среднее количество операций, совершаемых алгоритмом А для решения конкретных проблем размерностью N:

 

`Fa(N) = (1 / MDN)*å {Fa (D)} - средний случай на DN

 

В зависимости от влияния исходных данных на функцию трудоемкости алгоритма может быть предложена следующая классификация, имеющая практическое значение для анализа алгоритмов:

.Количественно-зависимые по трудоемкости алгоритм. Это алгоритмы, функция трудоемкости которых зависит только от размерности конкретного входа, и не зависит от конкретных значений:

(D) = Fa (|D|) = Fa (N)

 

Примерами алгоритмов с количественно-зависимой функцией трудоемкости могут служить алгоритмы для стандартных операций с массивами и матрицами - умножение матриц, умножение матрицы на вектор и т.д.

.Параметрически-зависимые по трудоемкости алгоритмы. Это алгоритмы, трудоемкость которых определяется не размерностью входа (как правило, для этой группы размерность входа обычно фиксирована), а конкретными значениями обрабатываемых слов памяти:

 

Fa (D) = Fa (d1,…,dn) = Fa (P1,…,Pm), m £ n

 

Примерами алгоритмов с параметрически-зависимой трудоемкостью являются алгоритмы вычисления стандартных функций с заданной точностью путем вычисления соответствующих степенных рядов. Очевидно, что такие алгоритмы, имея на входе два числовых значения - аргумент функции и точность, выполняют существенно зависящее от значений количество операций.

. Количественно-параметрические по трудоемкости алгоритмы. Однако в большинстве практических случаев функция трудоемкости зависит как от количества данных на входе, так и от значений входных данных, в этом случае:

(D) = Fa (||D||, P1,…,Pm) = Fa (N, P1,…,Pm)


В качестве примера можно привести алгоритмы численных методов, в которых параметрически-зависимый внешний цикл по точности включает в себя количественно-зависимый фрагмент по размерности.

. Порядково-зависимые по трудоемкости алгоритмы. Среди разнообразия параметрически-зависимых алгоритмов выделим еще оду группу, для которой количество операций зависит от порядка расположения исходных объектов. Пусть множество D состоит из элементов (d1,…,dn), и ||D||=N,

Определим Dp = {(d1,…,dn)}-множество всех упорядоченных N-ок из d1,…,dn, отметим, что |Dp|=n!. Если Fa (iDp) ¹ Fa (jDp), где iDp, jDp Î Dp, то алгоритм будем называть порядково-зависимым по трудоемкости.

Примерами таких алгоритмов могут служить ряд алгоритмов сортировки, алгоритмы поиска минимума и максимума в массиве.

 


Поделиться с друзьями:

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.056 с.