Энергосбережение - важно всегда помнить об эксплуатационных расходах. — КиберПедия 

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Энергосбережение - важно всегда помнить об эксплуатационных расходах.

2019-12-17 129
Энергосбережение - важно всегда помнить об эксплуатационных расходах. 0.00 из 5.00 0 оценок
Заказать работу


Эксплуатационные расходы систем вентиляции и кондиционирования складываются из энергетических затрат на обработку воздуха и затрат на сервисное обслуживание или ремонт оборудования.
Первая составляющая - неизбежная, однако величина ее определяется уже на этапе проектирования или выбора системы и она может быть оптимизирована.
Вторая составляющая - выбором оборудования (с точки зрения отказоустойчивости и ремонтопригодности), определяется качеством оборудования и его размещением (с точки зрения доступа для обслуживания).
Основу эксплутационных расходов в основном составляют энергозатраты.
Когда определены уже все параметры климата и подобраны расходы наружного воздуха, влияние на величину энергозатрат оказывает схема построения СКВ и алгоритм управления.
Для уменьшения энергозатрат в современных системах вентиляции и кондиционирования воздуха применяют рекуперацию. Смысл рекуперации в том, что удаляемый безвозвратно воздух из помещения, обладающей температурой заданной в помещении, обменивается энергией с поступающим наружным воздухом, параметры, которого, как правило значительно отличаются от заданных. Т.е. зимой удаляемый теплый вытяжной воздух частично нагревает наружный приточный воздух, а летом более холодный вытяжной воздух частично охлаждает приточный воздух. В лучшем случае на рекуперация можно уменьшить на энергозатраты на обработку приточного воздуха на 80 %! Технически рекуперация в приточно-вытяжной вентиляции осуществляется применением перекрёстноточных, вращающихся теплоутилизаторов и систем с промежуточным теплоносителем.
А) Перекрестноточные или пластинчатые рекуператоры состоят из пластин (алюминиевых), представляющих систему каналов для протекания двух потоков воздуха. Стенки каналов являются общими для приточного и вытяжного воздуха и легко передают. Благодаря большой площади поверхности обмена и турбулентному течению воздуха в каналах добиваются высокой степени теплоутилизации (теплопередачи) при относительно низком гидравлическом сопротивлении. Эффективность пластинчатых рекуператоров доходит до 70%.
Утилизируется только явное тепло вытяжного воздуха т.к. приточный и вытяжной воздух некоим образом не смешиваются, а конденсат образующий при охлаждении вытяжного воздуха задерживается сепаратором и отводиться дренажной системой из сливного поддона. Для предотвращения замерзания конденсата при низких температурах (минус 10-15), автоматика обеспечивает периодическую остановку приточного вентилятора или отвод части наружного воздуха в обводной канал в обход каналов рекуператора. Единственное ограничение в применении данного метода состоит в обязательном пересечении приточной и вытяжной ветки в одном месте.

 



Рис.12.

Роторный теплоутилизатор (вращающийся теплообменник) - представляет собой ротор с каналами для горизонтального прохода воздуха. Часть ротора находится в вытяжном канале. А часть в приточном, вращаясь ротор получает тепло вытяжного воздуха и передает его приточному, причем передается как явное, так и скрытое тепло, а также влажность. Эффективность теплоутилизации максимальна и достигает 80 %. Ограничение на применение данного метода накладывает прежде всего то, что до 10 % вытяжного воздуха смешивается с приточным, а в ряде случаев это недопустимо или нежелательно. Требования к конструкции аналогичны предыдущему варианту - вытяжная и приточная машина находится в одном месте. Этот способ дороже первого и реже находит применение.
Системы рекуперации с промежуточным теплоносителем - представляют собой пару теплообменников соединенных замкнутым трубопроводом. Один теплообменник находится в вытяжном канале, а другой в приточном. По замкнутому контуру циркулирует незамерзающая гликолевая смесь, перенося тепло от одного теплообменника до другого, причем в этом случае расстояние от приточной установки до вытяжной может весьма значительным.

 

 

Рис.13.
Эффективность теплоутилизации при таком методе не превышает 60 %. Стоимость сравнительна велика, однако в некоторых случаях это может быть единственным вариантом теплоутилизации.
В целом системы с рекуперацией стоят на 40-60 % дороже аналогичных систем без рекуперации, однако затраты на эксплуатацию при этом будут отличаться в разы! Даже при сегодняшних, явно заниженных, ценах на энергоносители время окупаемости системы рекуперации не превышает двух отопительных сезонов.
В начале отмечалось, что на энергосбережение влияет алгоритмы управления. Дело в том, что все системы кондиционирования и вентиляции рассчитываются на некоторые усредненные условия. Например, расход наружного воздуха определяли на одно количество людей, а реально в помещении может находиться менее 20 % от принятого значения, конечно в таком случае расчетный расход наружного воздуха будет явно избыточным, работа вентиляции в избыточном режиме приведет к необоснованной потере энергоресурсов. Логично в таком случае рассмотреть несколько режимов эксплуатации - Зимний и летний, переходный, дневной и ночной. Если автоматика способна установить подобные режимы - налицо экономия. Еще одни подход связан с регулированием расхода наружного воздуха в зависимости от качества газовой среды внутри помещения, т.е. система автоматики включает в себя газоанализаторы на вредные газы и подбирает значение расхода наружного воздуха таким образом, чтобы содержание вредных газов не превышало предельно-допустимых значений.
Конечно усложнение системы автоматики приводит к удорожанию системы в целом, но эти удорожание окупится и чем мощнее система или чем дороже энергоноситель - тем быстрее.

 


Список литературы

1. Русак О.Н., Малаян К.Р., Занько Н.Г. Безопасность жизнедеятельности: Учебное пособие. 5-е изд., стер. / Под ред. О.Н. Русака. – СПб.: Изд. «Лань». 2002. – 448 с.

2. Безопасность жизнедеятельности: Учебник для вузов / С.В. Белов, А.В. Ильницкая, А.Ф. Козьяков и др.; Под общ ред. С.В. Белова. 4-е изд. испр. и доп. – М.: Высш. шк., 2004. – 606 с.

3. Экология и безопасность жизнедеятельности: Учеб. Пособие для вузов/ Д.А. Кривошеин, Л.А. Муравей, Н.Н. Роева и др.; Под ред. Л.А. Муравья. – М.: ЮНИТИ-ДАНА, 2000. – 447 с.

4. Безопасность жизнедеятельности: Учебник / под ред. проф. Э.А. Арустамова. – 4-е изд. перераб. и доп. – М.: «Дашков и К», 2002. – 496 с.

5. Зотов, Курдюмов Безопасность жизнедеятельности. Учебник. – Колос. 2003. 468 с.

6. Безопасность жизнедеятельности. Защита населения и территорий при чрезвычайных ситуациях: Учебное пособие / Под ред. В.В. Денисова. – Ростов н/Д: «МарТ», 2003, - 608 с.

7. Безопасность жизнедеятельности. Безопасность технологических процессов и производств (Охрана труда): Учебное пособие для вузов / П.П. Кукин, В.Л. Лапин, Н.Л. Пономарев, Н.И. Сердюк – 2-е изд. испр. и доп. – М.: Высш. шк., 2001. – 318 с.

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.