Электрические и временные характеристики интерфейса RS-485 — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Электрические и временные характеристики интерфейса RS-485

2019-12-21 245
Электрические и временные характеристики интерфейса RS-485 0.00 из 5.00 0 оценок
Заказать работу

· До 32 приёмопередатчиков в одном сегменте сети.

· Максимальная длина одного сегмента сети: 1200 метров.

· В один момент активным может быть только один передатчик.

· Максимальное количество узлов в сети — 256 с учётом магистральных усилителей.

· Характеристика скорость обмена/длина линии связи:

o 62,5 кбит/с 1200 м (одна витая пара),

o 375 кбит/с 500 м (одна витая пара),

o 500 кбит/с,

o 1000 кбит/с,

o 2400 кбит/с 100 м (две витых пары),

o 10000 кбит/с 10 м.

Примечание: Скорости обмена 62,5 кбит/с, 375 кбит/с, 2400 кбит/с оговорены стандартом RS-485. На скоростях обмена свыше 500 кбит/с рекомендуется использовать экранированные витые пары.

· Тип приёмопередатчиков — дифференциальный, потенциальный. Изменение входных и выходных напряжений на линиях A и B: Ua (Ub) от −7 В до -12 В (+7 В до +12 В).

· Требования, предъявляемые к выходному каскаду: — выходной каскад представляет собой источник напряжения с малым выходным сопротивлением, |Uвых|=1,5:5,0 В (не <1,5 В и не >6,0 В);

o состояние логической «1»: Ua < Ub (гистерезис 200 мВ) — MARK, OFF;

o состояние логического «0»: Ua > Ub (гистерезис 200 мВ) — SPACE, ON (производители микросхем — драйверов, часто выбирают намного меньшие значения, гистерезис от 10 мВ[1][2]);

o выходной каскад должен выдерживать режим короткого замыкания, иметь максимальный выходной ток 250 мА, скорость нарастания выходного сигнала 1,2 В/мкс и схему ограничения выходной мощности.

· Требования, предъявляемые к входному каскаду: — входной каскад представляет собой дифференциальный вход с высоким входным сопротивлением и пороговой характеристикой от −200 мВ до +200 мВ:

o допустимый диапазон входных напряжений Uag (Ubg) относительно земли (GND) от −7 В до +12 В;

o входной сигнал представлен дифференциальным напряжением (Ui +0,2 В и более);

o уровни состояния приёмника входного каскада — см. состояния передатчика выходного каскада.

Сигналы[править | править код]

Стандарт определяет следующие линии для передачи сигнала:

· A - неинвертирующая

· B - инвертирующая

· C - необязательная общая линия (ноль)

Согласно стандарту [3]

· VA > VB соответствует логическому "0" и называется "активным" (ON) состоянием шины

· VA < VB соответствует логической "1" и называется "неактивным" (OFF) состоянием шины

Таким образом, при описании состояний шины используется инверсная логика. При этом логика однополярных сигналов на входе передатчика и выходе приёмника стандартом не определяется.

Несмотря на недвусмысленное определение, иногда возникает путаница по поводу того, какие обозначения ("A" или "B") следует использовать для инвертирующей и неинвертирующей линии. Для того, чтобы избежать этой путаницы, часто используются альтернативные обозначения, например: "+"/"-" или "D+"/"D-"[4].

Большинство производителей придерживается стандарта и использует обозначение "A" для неинвертирующей линии. То есть, высокий уровень сигнала на входе передатчика соответствует состоянию VA > VB на шине RS-485; также VA > VB соответствует высокому уровню сигнала на выходе приёмника[3].

Необходимо обратить внимание, что «неактивное» состояние линии от «активного», в контексте, обозначенном в стандарте (соотв. передача лог. 0 и 1), не отличаются электрически, помимо полярности - то есть, не являются эквивалентом «занятости» или «свободности» линии. Оба состояния активно передают в линию соответствующий символ. Для отключения передатчика в нём всегда имеется отдельный вход - при его отключении выходы переходят в высокоимпедансное состояние, допуская работу в этой линии других передатчиков. Таким образом, «активное» и «неактивное» состояния сами по себе не являются индикатором чего-либо, помимо передаваемого бита. Протокол передачи, использующий относительное кодирование, допускает инверсию передаваемых данных, а значит перемену проводов в паре местами без каких-либо последствий. При этом, однако, на практике гораздо чаще используется не абстрактный или создаваемый разработчиком протокол обмена, а отражение протокола RS232 в его логической части на аппаратный уровень RS485 - так как производятся промышленные преобразователи соответствующего типа, что позволяет не разрабатывать свой логический протокол. А здесь уже полярность подключения принципиальна в связи с тем, что RS232 использует определённое толкование передаваемых символов и не допускает их инверсии.

Согласование и смещение[править | править код]

При большой длине линии связи возникают эффекты длинных линий. Причина этому — распределённые индуктивные и ёмкостные свойства кабеля. Как следствие, сигнал, переданный в линию одним из узлов, начинает искажаться по мере распространения в линии, возникают сложные резонансные явления. Поскольку на практике кабель на всей длине имеет одинаковую конструкцию и, следовательно, одинаковые распределенные параметры погонной ёмкости и индуктивности, то это свойство кабеля характеризуют специальным параметром — волновым сопротивлением. Не вдаваясь в теоретические подробности, можно сказать, что в кабеле, на приёмном конце которого подключен резистор с сопротивлением, равным волновому сопротивлению кабеля, резонансные явления значительно ослабляются. Называется такой резистор терминатором. Для сетей RS485 они ставятся на каждой оконечности длинной линии (поскольку обе стороны могут быть приёмными). Волновое сопротивление наиболее распространенных витых пар CAT5 составляет 100 Ом[5]. Другие витые пары могут иметь волновое сопротивление 150 Ом и выше. Плоские ленточные кабели до 300 Ом.[6][7]

На практике номинал этого резистора может выбираться и бóльшего номинала, чем волновое сопротивление кабеля, поскольку омическое сопротивление того же кабеля может оказаться настолько велико, что амплитуда сигнала на приёмной стороне окажется слишком мала для устойчивого приёма. В этом случае ищут компромисс между резонансными и амплитудными искажениями сигнала, уменьшая скорость интерфейса и увеличивая номинал терминатора[8][9][10]. На скоростях 9600 бит/с и ниже волновые, резонансные явления в масштабах, способных ухудшить качество связи, не проявляются, и вопроса согласования линии не возникает. Даже более того, при низких скоростях передачи (менее 9600 бит/с) терминальный резистор не улучшает, а ухудшает надежность передачи (существенно для длинных линий связи)[11].

Ещё один источник искажения формы сигналов при передаче через витую пару — разная скорость распространения высокочастотного и низкочастотного сигнала (высокочастотная составляющая распространяется по витой паре несколько быстрее), что приводит к искажению формы сигнала при высоких скоростях передачи[12].

Помехи в линии связи зависят не только от длины, терминаторов и качества самой витой пары. Важно, чтобы линия связи последовательно обходила все приёмопередатчики (топология общей шины). Витая пара не должна иметь длинных отводов — отрезков кабеля для соединения с очередным узлом, кроме случая использования повторителей интерфейса, или при низких скоростях передачи, менее 9600 бит/с.

В момент отсутствия активного передатчика на шине уровень сигнала в линиях не определен. Для предотвращения ситуации, когда разница между входами A и B меньше 200мВ (неопределённое состояние), иногда применяется смещение с помощью резисторов или специальной схемы. Если состояние линий не определено, то приёмники могут принимать сигнал помехи. Некоторые протоколы предусматривают передачу служебных последовательностей для стабилизации приёмников и уверенного начала приёма.

 

2. Интерфейс USB.

USB (англ. Universal Serial Bus — «универсальная последовательная шина») — последовательный интерфейс для подключения периферийных устройств к вычислительной технике. Получил широчайшее распространение и фактически стал основным интерфейсом подключения периферии к бытовой цифровой технике.

Интерфейс позволяет не только обмениваться данными, но и обеспечивать электропитание периферийного устройства. Сетевая архитектура позволяет подключать большое количество периферии даже к устройству с одним разъёмом USB.

Разработка спецификаций USB производится в рамках международной некоммерческой организации USB Implementers Forum (USB-IF), объединяющей разработчиков и производителей оборудования с шиной USB. В процессе развития выработано несколько версий спецификаций . Тем не менее разработчикам удалось сохранить высокую степень совместимости оборудования разных поколений. Спецификация интерфейса охватывает беспрецедентно широкий круг вопросов подключения и взаимодействия периферийных устройств с вычислительной системой:

· унификацию разъёмов и кабелей

· нормирование энергопотребления

· протоколы обмена данными

· унификацию функциональности и драйверов устройств

 

3. Промышленные CAN сети.

CAN (англ. Controller Area Network — сеть контроллеров) — стандарт промышленной сети, ориентированный, прежде всего, на объединение в единую сеть различных исполнительных устройств и датчиков. Режим передачи — последовательный, широковещательный, пакетный.

CAN разработан компанией Robert Bosch GmbH в середине 1980-х и в настоящее время широко распространён в промышленной автоматизации, технологиях «умного дома», автомобильной промышленности и многих других областях. Стандарт для автомобильной автоматики.

Непосредственно стандарт CAN компании Bosch определяет передачу в отрыве от физического уровня — он может быть каким угодно, например, радиоканалом или оптоволокном. Но на практике под CAN-сетью обычно подразумевается сеть топологии «шина» с физическим уровнем в виде дифференциальной пары, определённым в стандарте ISO 11898. Передача ведётся кадрами, которые принимаются всеми узлами сети. Для доступа к шине выпускаются специализированные микросхемы — драйверы CAN-шины.

Общие сведения[править | править код]

CAN является синхронной шиной с типом доступа Collision Resolving (CR, разрешение коллизии), который, в отличие от Collision Detect (CD, обнаружение коллизии) сетей (Ethernet), детерминировано (приоритетно) обеспечивает доступ на передачу сообщения, что особо ценно для промышленных сетей управления (fieldbus). Передача ведётся кадрами. Полезная информация в кадре состоит из идентификатора длиной 11 бит (стандартный формат) или 29 бит (расширенный формат, надмножество предыдущего) и поля данных длиной от 0 до 8 байт. Идентификатор говорит о содержимом пакета и служит для определения приоритета при попытке одновременной передачи несколькими сетевыми узлами.

Рецессивные и доминантные биты[править | править код]

Для абстрагирования от среды передачи спецификация CAN избегает описывать двоичные значения как «0» и «1». Вместо этого применяются термины «рецессивный» (двоичное значение «1») и «доминантный» (двоичное значение «0»), при этом подразумевается, что при передаче одним узлом сети рецессивного бита, а другим доминантного, принят будет доминантный бит. Например, при реализации физического уровня на радиоканале отсутствие сигнала означает рецессивный бит, а наличие — доминантный; тогда как в типичной реализации проводной сети рецессив бывает при наличии сигнала, а доминант, соответственно, при отсутствии. Стандарт сети требует от «физического уровня», фактически, единственного условия: чтобы доминантный бит мог подавить рецессивный, но не наоборот. Например, в оптическом волокне доминантному биту должен соответствовать «свет», а рецессивному — «темнота». В электрическом проводе может быть так: рецессивное состояние — высокое напряжение на линии (от источника с большим внутренним сопротивлением), доминантное — низкое напряжение (доминантный узел сети «подтягивает» линию на землю). Если линия находится в рецессивном состоянии, перевести её в доминантное может любой узел сети (включив свет в оптоволокне или закоротив высокое напряжение). Наоборот — нельзя (включить темноту нельзя).

Виды кадров[править | править код]

· Кадр данных (data frame) — передаёт данные;

· Кадр удаленного запроса (remote frame) — служит для запроса на передачу кадра данных с тем же идентификатором;

· Кадр перегрузки (overload frame) — обеспечивает промежуток между кадрами данных или запроса;

· Кадр ошибки (error frame) — передаётся узлом, обнаружившим в сети ошибку.

 

 


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.029 с.