Глава II . Характеристика генной инженерии — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Глава II . Характеристика генной инженерии

2019-08-07 152
Глава II . Характеристика генной инженерии 0.00 из 5.00 0 оценок
Заказать работу

Генная инженерия — направление исследований в молекулярной биологии и генетике, конечной целью которых является получение с помощью лабораторных приемов организмов с новыми и не встречающимися в природе, комбинациями наследственных свойств. В основе генной инженерии лежит обусловленная последними достижениями молекулярной биологии и генетики возможность целенаправленного манипулирования с фрагментами нуклеиновых кислот. К этим достижениям следует отнести установление универсальности генетического кода, т. е. факта, что у всех живых организмов включение одних и тех же аминокислот в белковую молекулу кодируется одними и теми же последовательностями нуклеотидов в цепи ДНК; успехи генетической энзимологии, предоставившей в распоряжение исследователя набор ферментов, позволяющих получать в изолированном виде отдельные гены или фрагменты нуклеиновой кислоты, осуществлять in vitro синтез фрагментов нуклеиновых кислот, объединить в единое целое полученные фрагменты. Изменение наследственных свойств организма с помощью генной инженерии сводится к конструированию из различных фрагментов нового генетического материала, введению этого материала в реципиентный организм, созданию условий для его функционирования и стабильного наследования.

Наиболее эффективный метод искусственного синтеза генов связан с использованием фермента РНК-зависимой ДНК-полимеразы (обратная транскриптаза), обнаруженного Балтимором и Темином в онкогенных вирусах. Этот фермент выделен и очищен из клеток, зараженных некоторыми РНК-содержащими онкогенными вирусами, в т. ч. вирусом птичьего миелобластоза, саркомы Рауса, мышиной лейкемии. Обратная транскриптаза обеспечивает синтез ДНК на матрице информационной РНК. Использование молекул иРНК как матриц для синтеза ДНК в значительной степени облегчает искусственный синтез отдельных структурных генов высших организмов, поскольку последовательность азотистых оснований в молекуле иРНК является точной копией последовательности азотистых оснований соответствующих структурных генов, а методика выделения различных молекул иРНК достаточно хорошо разработана. Успехи в выделении иРНК белка глобина, входящего в состав гемоглобина человека, животных и птиц, иРНК белка хрусталика глаза, иРНК иммуноглобина, иРНК специфического белка злокачественной опухоли позволили с помощью обратной транскриптазы осуществить синтез структурной части генов, кодирующих некоторые из этих белков.

Однако в организме структурные гены функционируют совместно с регуляторными, нуклеотидная последовательность которых не воспроизводится молекулой иРНК. Поэтому ни один из указанных способов не позволяет осуществить синтез совокупности структурного и регуляторного гена. Решение этой проблемы стало возможным после разработки методов выделения отдельных генов. Для выделения бактериальных генов используют небольшие ДНК-содержащие цитоплазматические структуры, способные реплицироваться независимо от бактериальной хромосомы. Эти структуры образуют единую группу внехромосомных генетических элементов бактерий — плазмид. Некоторые из них могут внедряться в бактериальную хромосому, а затем спонтанно либо под воздействием индуцирующих агентов. УФ-облучения, переходить из хромосомы в цитоплазму, захватывая с собой и прилегающие хромосомные гены-клетки хозяина. Внехромосомные генетические элементы бактерий, обладающие такими свойствами, называют эписомами. К эписомам относят умеренные фаги, половой фактор бактерий, факторы лекарственной устойчивости микроорганизмов, бактериоциногенные факторы. В цитоплазме гены, захваченные эписомами, реплицируются в их составе и часто образуют множество копий. Разработка эффективного метода выделения плазмид, в частности умеренных фагов, несущих генетический материал бактериальной хромосомы, и выделения включенного в геном бактериофага фрагмента хромосомы бактериальной клетки позволила в 1969 г. Беквиту, выделить лактозный оперон — группу генов, контролирующих синтез ферментов, необходимых для усвоения кишечной палочкой лактозы. Аналогичная техника была использована для выделения и очистки гена, контролирующего синтез тирозиновой транспортной РНК кишечной палочки.

Функциональную активность гибридных ДНК определяют возможностью их переноса в клетки реципиентных организмов и последующего умножения в этих клетках. В качестве реципиентов уже сейчас эффективно используют не только бактерии, но и клетки высших организмов, пока, однако, лишь в виде культуры ткани, культивируемой вне организма. Имеются указания на возможность проникновения ДНК фагов, несущих бактериальные гены, в клетки соединительной ткани человека, в протопласты либо в недифференцированную культуру клеток растений. В 1971 г. американский исследователь Меррил, сообщил об опытах по исправлению наследственного дефекта — галактоземии путем введения в «больные» клетки галактозных генов бактерий, включенных в состав ДНК трансдуцирующего фага. В результате клетки больного галактоземией, дефектные по ферменту бета-D-галактозо-1-фосфатуридилтрансферазе, не способные усваивать галактозу, восстанавливали нормальную способность к росту в присутствии галактозы, а в их экстрактах была зарегистрирована ранее отсутствовавшая ферментативная активность. Сходный результат был получен Хорстом, при введении бактериального гена, контролирующего синтез бета-галактозидазы в фибробласты больного с генерализованным ганглиозидозом, характеризующимся резкой недостаточностью этого фермента. Маньон и его сотрудники с помощью вируса герпеса перенесли ген, контролирующий синтез тимидинкиназы, из клеток человека в клетки мыши, восстановив способность дефектных мышиных фибробластов синтезировать этот фермент.

Одним из путей передачи генетической информации в культуре клеток человека, животных и растений является гибридизация соматических клеток, разработанная Эфрусси и Барски. Эффективность этого метода значительно повысилась после того, как было обнаружено, что частицы инактивированного вируса парагриппа типа Сендай увеличивают частоту слияния клеток из самых различных источников. Продемонстрирована возможность передачи отдельных генов из изолированных хромосом китайского хомячка в клетки соединительной ткани мыши. Описаны гибриды клеток человека и мыши, в которых часть хромосом человека удаляется, а часть остается функционально активной. Развитие методов микрохирургии клеток позволило пересаживать клеточные ядра из соматических клеток в оплодотворенные яйцеклетки и получать в результате абсолютно идентичные организмы.

  

 



Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.