Хронология важнейших открытий — КиберПедия 

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Хронология важнейших открытий

2019-08-04 136
Хронология важнейших открытий 0.00 из 5.00 0 оценок
Заказать работу

1600 У. Гилберт Заложены основы электро- и магнитостатики
1733 Ш. Дюфе Открытие двух видов электричества, установление притяжения разноименных зарядов и отталкивания одноименных
1745 П. Мушенбрук Создание первого электрического конденсатора (лейденская банка)
1747 Ж. Нолле Изобретение электроскопа
1781 А. Вольта Изобретение чувствительного электроскопа с соломинками
1783 А. Вольта Создание электрического конденсатора
1785 Ш. Кулон Установлен основной закон электрического взаимодействия (закон Кулона)
1799 А. Вольта Сконструирован первый источник постоянного электрического тока — «вольтов столб» — прототип гальванического элемента
1820 А. Ампер Открытие взаимодействия электрических токов и установление закона этого взаимодействия (закон Ампера)
1821 М. Фарадей Получение вращения проводника с током в магнитном поле, т.е. прообраза электромотора
1822 А. Ампер Создание первого соленоида
1826 Г. Ом Экспериментально установлен основной закон электрической цепи, связывающий силу тока, сопротивление и напряжение (закон Ома)
1827 Г. Ом Введение понятия «электродвижущей силы», падения напряжения в цепи и «проводимости»
1831 М. Фарадей Открытие явления электромагнитной индукции
1832 Дж. Генри Открытие явления самоиндукции
1834 М. Фарадей Введение понятия о силовых линиях (идея поля)
1834 Б. С. Якоби Создание одного из первых практических электромоторов
1845 В. Вебер Разработка теории электромагнитных явлений
1845 Г. Кирхгоф Открытие закономерностей в распределении электрического тока в разветвленной цепи
1860 Дж. Максвелл Создание теории электромагнитного поля
1879 Т. Эдисон Изобретение лампы накаливания
1888 Г. Герц Экспериментально доказано существование электромагнитных волн, предсказанных Дж. Максвеллом
1892 Х. Лоренц Создание основ классической электронной теории

 

 

XVII век

В средние века изучение магнитных явлений приобретает практическое значение. Это происходит в связи с изобретением компаса.

Уже в XII в. в Европе стал известен компас как прибор, с помощью которого можно определить направление на части света. О компасе европейцы узнали от арабов, которым было уже к этому времени известно свойство магнитной стрелки. Еще раньше, вероятно, такое свойство знали в Китае. Начиная с XII в. компас все шире применялся в морских путешествиях для определения курса корабля в открытом море.

Практическое применение магнитных явлений приводило к необходимости их изучения. Постепенно выяснялся целый ряд свойств магнитов.

В 1600 г. вышла книга английского ученого Гильберта (1544-1603 гг.) «О магните, магнитных телах и большом магните - Земле». В ней автор описал уже известные свойства магнита, а также собственные открытия.

Еще раньше узнали, что магнит всегда имеет два полюса. Они были названы по имени частей света - северный полюс и южный полюс. В числе свойств магнита Гильберт указывал на то, что одинаковые полюсы отталкиваются, а разноименные притягиваются.

Гильберт предполагал, что Земля представляет собой большой магнит. Чтобы подтвердить это предположение, Гильберт проделал специальный опыт. Он выточил из естественного магнита большой шар. Приближая к поверхности шара магнитную стрелку, он показал, что она всегда устанавливается в определенном положении, так же как стрелка компаса на 3емле.

Гильберт описал явление магнитной индукции, способы намагничивания железа и стали и т. д. Книга Гильберта явилась первым научным исследованием магнитных явлений.

В своей книге Гильберт коснулся и электрических явлений. Нужно отметить, что хотя в то время магнетизм и электричество рассматривались как явления разной природы, тем не менее очень давно ученые заметили в них много общего. Поэтому не случайно во многих работах исследовались одновременно и магнитные и электрические явления. В частности, изучение магнетизма вызвало интерес к исследованию электрических явлений.

Так было и у Гильберта. Изучая магнитные явления, что имело практический интерес, он уделил внимание и электричеству, хотя оно в то время в практике не использовалось.

Гильберт открыл, что наэлектризовать можно не только янтарь, но и алмаз, горный хрусталь и ряд других минералов. В отличие от магнита, который способен притягивать только железо (других магнитных материалов в то время не знали), наэлектризованное тело притягивает многие тела.

Новый шаг к изучению электрических явлений был сделан немецким ученым Отто фон Герике (1602-1686 гг.), бургомистром Магдебурга, известным прежде всего своими опытами с магдебурскими полушариями.. В 1672 г. вышла его книга, в которой были описаны опыты по электричеству. Наиболее интересным достижением Герике было изобретение им «электрической машины». «Электрическая машина» представляла собой шар, сделанный из серы и посаженный на железный шест. Герике вращал этот шар и натирал его ладонью руки. Впоследствии ученый несколько раз усовершенствовал свою «машину».

Потираемый руками серный шар на оси (считается первой электризационной установкой - "машиной Герике") служил изобретателю для модельной демонстрации "мировых сил" (virtutes mundanae). В действительности же Герике наблюдал электрическое притяжение и отталкивание, т. е. электростатическую индукцию, эффект острия, электропроводность льняной нити, которой шар передавал свою способность притягивать легкие тела и др. В опыте с нитью притяжение наблюдалось в пределах более 2-3 см от нижнего конца нити длиной полметра.

Несмотря на простоту прибора, Герике смог с его помощью сделать некоторые открытия. Так, он обнаружил, что легкие тела могут не только притягиваться к наэлектризованному шару, но и отталкиваться от него.

Исаак Ньютон (1643-1727 гг.) в статье, доложенной Королевскому обществу в 1675 г., предложил заменить серный шар стеклянным (электризация стекла была известна еще Гильберту). В результате у Ньютона и Франсиса Хоксби (ум. 1713 г.) появились снабженные ручным приводом электризационные машины на основе вращающегося стеклянного шара, потираемого руками.

Впрочем, то, что Гилберт и Герике официально внесли в историю науки было известно и до них людям далеким от науки. Электризацию серы и стекла давно использовали в своей практике буквально заполонившие Европу бродячие фокусники, жанр которых совершенно не требовал традиционной ловкости рук. Вот чем покоряли публику эти шарлатаны: брали кусок янтаря и шепча какие-то заклинания, натирали янтарь об собственный парик, и - пожалуйста, мелкие бумажки мечутся между столом и камешком. Я, дескать, Великий Маг, Повелитель бумажек! Публика верила и, трепеща, охотно расставалась со своими сбережениями. Ну, а для развлечения коронованных особ изобретали механизмы, позволявшие увеличить силу магии – типа стеклянного шара, который при вращении натирался о кожаные подушечки. Первая придворная дама, временно наделенная магической силой с помощью такого механизма, осторожно протягивала свою руку к чаше с легковоспламеняющейся жидкостью, и магические искры, вылетавшие из руки, эту жидкость воспламеняли. При этом дама получала массу новых интересных ощущений и инстинктивно ахала от восторга. Затем стали применять стеклянные диски, трущиеся о мех, что дало возможность подстраивать мелкие сюрпризы. Какой-нибудь гость двора дотрагивался до безобидной с виду вещицы, и - трах!- получал легкий шок. Со временем магическую силу увеличили настолько, что стало возможным выстроить длинную цепочку из взявшихся за руки гвардейцев и с интересом наблюдать за их гримасами.

 

XVIII век

В начале XVIII в. Хоксби использовал в качестве источника "электрической силы" стеклянную трубку, потираемую непосредственно рукой, бумагой, тканью или шкуркой. Благодаря такой трубке электрические опыты получили широкое распространение, но при этом сами электризационные машины надолго вышли из употребления, что, по мнению некоторых историков, затормозило развитие науки.

Примерно в это же время исследованиями электрических явлений занимался англичанин Стивен Грей. Источниками "электрической силы" у Грея служили стеклянные трубки или палочки длиной 104 см и диаметром 3 см. Грей обнаружил ряд тел, которым трубка может сообщать "электрическую силу". Это - деревянные стержни и проволока (железная и латунная), их Грей вставлял в трубку (через пробку); пеньковая бечевка, которую он привязывал к трубке или заталкивал в нее, и др. В опытах по передаче электричества Грей надевал на конец деревянных стержней или подвешивал к концу бечевки или проволоки шар из слоновой кости, пробки или свинца со сквозным отверстием. Максимальная длина комнатной электропередачи по бечевке или проволоке, свисавших с трубки, не превышала метра, а максимальная длина горизонтальной комнатной электропередачи по состыкованным деревянным проводникам (в обоих случаях - с шаром на конце) составляла более 5,5 м, включая длину трубки.

Сообщение телам "электрической силы" Грей проверял с помощью пушинки, которая могла притягиваться к телу, отталкиваться от него, парить в воздухе, снова притягиваться и т. д., с помощью пробной нити или латунного листка.

Желая передать электричество на большее расстояние, 19 мая 1729 г. Грей провел такой опыт. Стоя на балконе, он держал в руках стеклянную трубку со свисающей веревкой длиной 8 м с шаром из слоновой кости на конце. Внизу находился ассистент Грея, определявший наличие заряда с помощью латунного листа (на дощечке). Грей не сомневался в том, что смог бы передать электричество таким способом даже с купола собора Св. Павла в Лондоне.

В Грей осуществлял также опыт с "электрическим мальчиком". Грей натянул на одинаковой высоте 2 шелковые веревки (т.е. изоляторы) и положил на них мальчика 8-9 лет. При приближении к его ногам наэлектризованной палочки латунные листочки у лица мальчика подлетали 20-25 см.

Опыт объясняется электрической индукцией или, обобщенно, поведением проводником (мальчика и листочков) в электростатическом поле.

У Грея еще не было четкого представления о проводниках и изоляторах. Он описывает в одинаковых выражениях передачу электричества свинцовому шару и шару из слоновой кости.

Грей решил передать электричество по горизонтали, чтобы выяснить, как далеко это можно делать. Он подвесил веревку на гвоздях, вбитых в деревянную балку, дальний конец веревки с шаром свисал, как обычно, над латунным листком. Опыт не получился: латунный листок лежал неподвижно. Грей сделал правильный вывод о том, что электричество ушло в балку.

Преодолеть затруднение удалось благодаря блестящей идее Уилера, вместе с которым Грей экспериментировал летом 1729 г. Уилер предложил поддерживать "линию электропередачи" шелковым шнуром, а не подвешивать ее на гвоздях. Первый же опыт, проведенный 2 июля 1729 г. около 10 часов утра (как скрупулезно отметил Грей в своих записях), превзошел все ожидания. Горизонтальная часть бечевочной линии проходила от стеклянной палочки, к которой она была привязана, до шелкового шнурка. К концу линии был подвешен шар из слоновой кости. Свисающая часть линии составляла около 2,7 м, а общая длина была равна 24,5 м. При потирании палочки латунный листок притягивался к шару и держался на нем некоторое время.

Заменив шелковый шнурок металлической проволокой, Грей опять получил отрицательный результат. Грей понял, что эффект изоляции линии обусловлен не тонкостью шнурка, а свойствами шелка. Проведя впоследствии специальные опыты, Грей убедился, что из всех шелковых шнурков наилучшими изоляционными свойствами обладают шнурки голубого цвета.

В успешно проведенных в 1729 г. опытах длина линии (веревки) доходила до 233 м, а в 1730 г. - до 270 м. Линии держались на 15 отрезках шелковых шнурков, натянутых в горизонтальной плоскости между деревянными стойками. Так появились предшественники основных элементов линии электропередачи - проводников, изоляторов и опор. Стало ясно, что электричество можно передавать на большие расстояния, "хоть на край света", как утверждал Иоганн Генрих Винклер (1703-1770 гг.) в 1744 г., говоря о передаче электричества по проводнику, обмотанному шелком или подвешенному на шелке. Интересно, что Винклер подчеркивает, что передача может оказывать сопротивление.

5 августа 1729 г. Грей показал, что электричество можно передавать, не касаясь линии передачи трубкой, а только держа трубку близ линии, т. е. (по позднейшей терминологии) с помощью электростатической индукции. Грей проделал аналогичный опыт и с деревянным стержнем, подвешенным к потолку на шелковых шнурках или леске из конского волоса. Примерно через десять лет по такому принципу стали устраивать кондукторы электризационных машин.

Таким образом именно Грей открыл явление электропроводности. Он установил, что электричество способно передаваться от одних тел к другим по металлической проволоке. По шелковой нити электричество не распространялось. В связи с этим Грей разделил все тела на проводники и непроводники электричества. Благодаря работам Грея, проведенным при участии Грэнвилла Уилера (1701-1770 гг.), опыты по передаче электричества на расстояние вышли за пределы помещения.

Ознакомившись с опытами Грея французский ученый Шарль-Франсуа Дюфе решил провести его на себе. Он устроился на деревянном щите, накрытом покрывалом и лежащем на шелковых веревках. И когда один ассистент когда один ассистент поднес наэлектризованную трубку к рукам и лицу Дюфе, то между рукой другого ассистента, Жана-Антуана Нолле, находившегося у ног Дюфе, и телом Дюфе неожиданно проскочила искра. Дюфе и Нолле испытали при этом несильную боль, как от булавочного укола или искры от огня. Опыт объ­ясняется электростатической индукцией и пробо­ем воздушного промежутка между телами Дюфе и Нолле.

Вот так, по-видимому, впервые научились из­влекать электрическую искру из тела человека.

Дюфе опубликовал этот опыт в трудах Па­рижской академии наук за 1733 г. [4] и сообщил о нем в письме в Англию 27 декабря 1733 г.

В 1737 г. немецкий физик Георг Матиас Бозе (1710—1761) повторил опыт Дюфе по из­влечению искр из тела человека, добившись более сильного эффекта благодаря применению вместо стеклянной трубки электризационной машины на основе вращаемого стеклянного шара.

О том, какое впечатление производили в пер­вой половине XVIII в. опыты с извлечением искр из человека, можно судить по следующему отрывку, которым начинается книга Христиана Готлиба Кратценштейна (1723—1795, с 1748 по 1753 г. жившего в Петербурге), написанная в форме писем к коллеге-медику в стиле, харак­терном для своего времени: «Поверите ли тому, что я скажу Вам? Люди теперь научились делать себя такими страшными, что Вы не сможете прикоснуться к ним, не опасаясь, что из них выйдет пламя, как из горы Этны. Если не знать, что они из мяса и кости, то можно подумать, что попал в общество злых духов»

В результате своих опытов Дюфе выяснил, что существует два рода электричества. Один вид электричества получается при натирании стекла, горного хрусталя, шерсти и некоторых других тел. Это электричество Дюфе назвал стеклянным электричеством.

Второй вид электричества получается при натирании янтаря, шелка, бумаги и других веществ. Этот вид электричества Дюфе назвал смоляным. Ученый установил, что тела, наэлектризованные одним видом электричества, отталкиваются, а разными видами, - притягиваются.

Очень важным шагом в развитии учения об электричестве было изобретение лейденской банки, т. е. электрического конденсатора.

Лейденская банка была изобретена почти одновременно немецким физиком Клейстом и голландским физиком Мушенбруком в 1745 - 1746 гг. Свое название она получила по имени города Лейдена, где Мушенбрук впервые проделал с ней опыты по изучению электрических явлений.

Мушенбрук так описывал свое изобретение в письме к французскому ученому Реомюру: «Хочу сообщить Вам новый, но ужасный опыт, который не советую повторять. Я занимался изучением электрической силы. Для этого я подвесил на двух шелковых голубых нитях железный ствол, получающий электричество от стеклянного шара, который быстро вращался вокруг оси и натирался руками. На другом конце висела медная проволока, конец которой был погружен в стеклянный круглый сосуд, заполненный наполовину водой, который я держал в правой руке; левой же рукой я пытался извлекать из электрического ствола искру. Вдруг моя правая рука была поражена ударом с такой силой, что все тело содрогнулось, как от удара молнии.

Несмотря на то что сосуд, сделанный из тонкого стекла, не разбивается и кисть руки обычно не смещается при таком потрясении, тем не менее локоть и все тело поражаются столь страшным образом, что я не могу выразить словами, я думал, что пришел конец».

Вскоре лейденская банка была усовершенствована: внешнюю и внутреннюю поверхность стеклянного сосуда стали обклеивать металлической фольгой. В крышку банки вставляли металлический стержень, который сверху заканчивался металлическим шариком, а нижний конец стержня при помощи металлической цепочки соединялся с внутренней обкладкой.

Лейденская банка является обычным конденсатором. Когда внешнюю обкладку ее заземляют, а металлический шарик соединяют с источником электричества, то на обкладках банки скапливается значительный электрический заряд и при ее разряде может протекать значительный ток. Получение больших зарядов с помощь лейденской банки значительно способствовало развитию учения об электричестве.

Прежде всего усовершенствовалась аппаратура для исследования электрических явлений, в частности электрические маслины. Это были, как и первая машина Герике, такие устройства, в которых электрический заряд получался в результате натирания стеклянного или эбонитового диска кожей или другими подобными материалами.

3атем появился первый электроизмерительный прибор - электрометр. Его история начинается с электрического указателя, созданного Рихманом вскоре после изобретения лейденской банки. Этот прибор состоял из металлического прута, к верхнему концу которого подвешивалась льняная нить определенной длины и веса. При электризации прута нить отклонилась. Угол отклонения нити измерялся с помощью шкалы, прикрепленной к стержню и разделенной на градусы.

В последующее время были изобретены различной конструкции электрометры. Так, например, электрометр, созданный итальянцем Беннетом, имел два золотых листочка, помещенных в стеклянный сосуд. При электризации листочки расходились. Будучи снабжен шкалой, такой прибор мог измерять, как тогда говорили, «электрическую силу. Но что такое «электрическая сила», этого еще никто не знал, т. е. неизвестно было, какую физическую величину измеряет этот прибор. Данный вопрос был выяснен значительно позже.

Наука Российской империи тоже не стояла на месте. В 1753 г. русский академик М. В. Ломоносов сообщал И. И. Шувалову, что Г. В. Рихман выполнял лейденский опыт "с сильным ударом"; опыт, писал Ломоносов, "можно переносить с места на место, отделяя от машины в знатное расстояние около целой версты". Хотя описание и чертеж опыта утрачены, можно заключить, что петербургский академик соорудил линию передачи от электризационной машины "в знатное расстояние". Что представляла собой рихмановская линия передачи - не известно. Есть сведения, что Рихман устраивал довольно длинные электрические линии. Так, он подвесил на шелковых шнурах железную цепь длиной 40 м, которая соединяла между собой остроконечный железный прут, заряжавшийся атмосферным электричеством даже в ясную погоду, и электрический указатель (электрометр). Длина цепи, по данным Рихмана, не влияла на показания электрометра. В опыте, о котором сообщает Ломоносов, Рихман, по-видимому, заряжал и разряжал Лейденскую банку "с сильным ударом" в различных точках линии.

Вышеизложенные опыты стимулировали идею электрического телеграфа, но удивительно, что ее не высказал ни один из вышеупомянутых исследователей.

Первое достоверно известное предложение использовать электричество (статическое) для передачи сообщений содержится в письме некоего "С. М." из города Ренфрю от 1 февраля 1753 г., напечатанное в Шотландском журнале за 17 февраля. На это письмо ссылаются во многих работах по истории телеграфии. "С. М." предлагал провести между двумя пунктами параллельные провода с использованием изоляторов из стекла (или другого подходящего материала) на опорах, установленных через определенные промежутки. Проводов должно быть столько, сколько букв в алфавите. Передача каждой буквы должна осуществляться путем приведения в соприкосновение кондуктора электризационной машины и соответствующего провода. На приемном пункте, согласно предложению, следовало подвесить шары, к которым должны были притягиваться листки из бумаги и т. п. с нанесенными на них буквами.

После изобретения лейденской банки, когда ученые смогли наблюдать сравнительно большие искры при электрическом разряде, возникла мысль об электрической природе молнии.

Известный американский ученый, общественный деятель, а впоследствии и президент Бенджамин Франклин (1706 - 1790) высказал эту идею в письме в Лондонское королевское общество в 1750 г. Кроме этого именно ему принадлежит предложение называть стеклянное электричество положительным, а смоляное - отрицательным. При этом он исходил из своих взглядов на природу электричества.

В этом письме он объяснял также, как можно проверить высказанное предположение. Он предлагал поставить на башню будку, на крышу которой вывести железный шест. Помещенный внутри будки человек в случае грозы мог бы извлекать из шеста электрические искры.

Содержание письма Франклина стало известно во Франции. О нем узнал француз Далибар, который в мае 1752 г. проделал опыт, о котором писал Франклин.

У себя в саду, возле Парижа, Далибар установил высокий железный шест, изолировав его от земли. В то время когда собиралась гроза, он попробовал извлечь электрические искры из шеста. Опыт удался. Действительно, Далибару удалось получить электрические искры.

В том же году, летом, Франклин в Америке проделал похожий опыт. Вместе со своим сыном он запустил змей во время грозы. Когда нить, которой был привязан змей, намокла, то из нее можно было извлекать электрические искры. Франклину даже удалось зарядить при этом лейденскую банку.

Утвердившись во мнении, что молния – не что иное, как обычное электрическое явление, Бенджамин Франклин, по-видимому, первый предложил установить громоотводы –хотя бы на пороховых складах. Дело это приживалось со скрипом - кто ж не знал, что молнии есть оружие Бога! Однако нашелся человек, который выставили над своим домом громоотвод в виде меча, торчащего в небо! На почве дремучего страха перед гневом божьим в городе началась такая паника, что бедного авантюриста даже отдали под суд.

После того как об опытах Франклина стало известно в Петербурге, подобными опытами занялись Рихман и Ломоносов. Они устроили более удобную установку для изучения атмосферного электричества, названную громовой машиной.

Громовая машина представляла собой заостренный железный шест, установленный на крыше дома. От железного шеста в дом шла проволока. Конец этой проволоки был соединен с электрическим указателем, т.е. с простейшим электрометром, изобретенным Рихманом.

С громовой машиной и Рихман и Ломоносов проделали много опытов. Ломоносов открыл, что электрические заряды в атмосфере появляются не только во время грозы, но и без нее. На основе своих опытов Ломоносов создал первую научную теорию образования электричества в атмосфере.

Летом 1753 г. случилось несчастье. Собиралась гроза, и Рихман пришел к своей громовой машине, чтобы наблюдать электрические разряды. Вдруг в комнате появилась шаровая молния, произошел электрический разряд – и ученый был убит.

Впечатлением от трагической смерти Рихмана немедленно воспользовалось духовенство в целях борьбы с безбожием. Попы и монахи стали распространять мысль о том, что Рихман был наказан богом за дерзкие опыты.

После того как была выяснена электрическая природа грозы возникла идея устройства громоотвода для предохранения зданий от пожаров в результате попадания в них молнии.

Громоотводы быстро вошли в практику. Это было первое практическое применение учения об электрических явлениях. Оно способствовало развитию научных исследований по электричеству вообще.

Следует отметить, что духовенство и позже враждебно относилось к исследованиям атмосферного электричества и к использованию громоотводов, полагая, что защита от ударов молний – безбожное занятие.

Второй попыткой использования электричества для практических целей было применение его для лечения болезней.

Как мы видели выше, уже Мушенбрук, описывая изобретение лейденской банки, обратил внимание на сильное и необычное действие электрического разряда на человека.

Вскоре этим действием заинтересовались врачи. Возникла мысль о том, что в живом организме существуют электрические токи, которые играют в нем какую-то важную роль. Вместе с этим пришло убеждение о возможности применения электричества для лечения болезней.

С этой целью стали производить опыты по электризации людей, пропусканию через тело человека электрического тока и т. д.

В 1743-1744 гг. уже упомянутый Христиан Готлиб Кратценштейн помогал в электрических иссле­дованиях своему учителю, профессору универ­ситета в Галле Иоганну Готлибу Крюгеру (1715— 1759). Эти исследования рассматри­ваются как первая попытка применения элек­тричества в медицине. Их инициатором был Крюгер. Вот как он пришел к мысли о воз­можности электролечения.

Ученый заметил на теле человека пятно от электрической искры. «Если электричество может не только вызывать пятна на коже, но и рас­пространяться по всему телу, то не несомненно ли, что электризацией можно вызвать изменения и во внутренних частях человеческого тела, где угодно? Однако все, что может вызвать изме­нения в человеческом теле, можно использовать для восстановления потерянного или сохранения имеющегося здоровья, если только пользоваться этим вовремя и в нужных местах. Не следует ли отсюда, что электризация является новым видом лечения?», — рассуждает Крюгер в по­слании, датированном 21 декабря 1743 г.

Приоритет Крюгера как основателя электро­медицины подтверждает Кратценштейн: «На­сколько я знаю, первым пришел к мысли о том, что электризация может быть полезна в медицине, несравненный г-н профессор Крюгер. Следует заметить, что термин «элек­тризация» в XVIII в. не имел четкого опре­деления.

Кратценштейн опубликовал некоторые свои электрофизические исследования. Он. в частно­сти, измерял у себя пульс и получил в начале электризации 88 ударов в минуту, а в конце – 96. Подобные результаты Кратценштейн, соглас­но его сообщениям, получал и на других ис­пытуемых.

В 1744 г. ординарный профессор физиологии из Лейпцига Самуэль Теодор Квельмальц (1696— 1758) также исследовал влияние электричества на человеческий организм.

В письме, датированном 7 декабря 1744 г., Кратценштейн пишет о том, что он вылечил некоему ученому мужу два пальца на руке с помощью одной-единственной электризации. Столь же оптимистично Кратценштейн сообщает далее, что у всех лиц, которых он подверг элек­тризации, наблюдалось облегчение во всех членах и улучшение сна. Кратценштейн ссылается также на успешный эффект электролечения, полученный профессором Арнольдом из Кенигсберга.

После появления более мощного средства электрического воздействия на организм человека – конденсатор в виде лейденской банки её начали применять в электротерапии. Лейденский опыт (разрядка конденсатора через тело человека) был научной сенсацией XVIII в - всех восхищала длин­ная голубоватая искра и изумляло и пугало «элек­трическое потрясение» при разрядке лейденской банки, заряженной от электризационной машины. Эффект «электрического потрясения» явно преувеличивал­ся некоторыми экспериментаторами, проводив­шими опыт на себе. Но убивая разрядами лейден­ской банки цыплят и т. п., Бенджамин Франклин, например, справедливо полагал, что достаточно большой батареей лейденских банок можно убить и человека

Действием элек­тричества на человеческий организм интересо­вался Ге­орг-Вильгельм Рихман. Он кри­тически относился к сведениям, поступавшим из-за рубежа. Так, он убедился в том, что ус­корения кровообращения у человека, находяще­гося в электростатическом поле (как сказали бы мы сегодня), не происходит.

Первые известные опыты электролечения на территории Российской империи принадлежат Павлу Паульсону. Как со­общает Рихман в начале 1753 г., «у нас в Лиф-ляндии <...> доктор медицины Паульсон при помощи электричества быстро вылечил человека, который после перенесенной им горячки в те­чение шести месяцев был немым и с одной стороны расслабленным, так что тот вновь обрел способность говорить и владеть своими членами». Паульсон в 1747 г. окончил медицинский факультет в Галле (после чего ра­ботал врачом в Дерите) и, несомненно, был уче­ником Крюгера.

В Петербурге электролечением систематически занимался «профессор медицинского электриче­ства» городской больницы и (до 1795 г.) про­фессор физики Хирургического училища Готфрид Альберт Кольрейф (1749-1802). Под его руководством только в 1789 г. в больнице на Фонтанке у Обуховского моста прошли элек­тролечение 60 человек, из них 20 «с наилучшим успехом», у некоторых курс продолжается, а у других электролечение не дало результатов.

В 1793 г. в Москве был издан перевод книги французского аббата Бертолона (?—1799), каса­ющейся электролечения (книга была одобрена Лионской академией наук и вышла во Франции в 1781 г. В книге описывается электролечение различных болезней, включая некоторые виды слепоты.

Следует отметить, что медицинская наука тра­диционно «лидирует» среди других наук по под­тасовке данных. Не заявляли ли пациенты электротерапевтов о своем «излечении» во из­бежание дальнейших пыток электрическими раз­рядами?

В 1793 г. в Москве вышел перевод книги королевского механика Джорджа Адамса (1709-1772), в которой также уделяется внимание элек­тролечению (первое английское издание вышло в 1784 г.). В конце XVIII в. электролечение применялось в Екатерининской больнице в Москве.

Русский ученый-энциклопедист Андрей Ти­мофеевич Болотов (1738—1833) в провинции са­мостоятельно изготовил электромедицинское обо­рудование и с начала 1790-х годов регулярно проводил электролечение. Лечение осуществлялось разрядом лейденской банки с применением различных электродов для разрядки через больные органы человека. В течение 2-х лет электролечение прошли более 1500 чел.

Был написан ряд книг по исследованию действия электричества на организм человека. В качестве примера можно указать на книгу Марата, известного деятеля французской революции, врача по специальности. Он написал в 1783 г. «Трактат о медицинском электричестве», который был удостоен специальной премии. Однако все такие исследования в то время не привели к каким-либо положительным практическим результатам. Действительное применение электричества для лечения болезней началось гораздо позже. Но такие исследования сыграли большую роль в усилении интереса к исследованиям электрических явлений вообще. Больше того, как мы увидим ниже, именно исследование влияния электричества на живой организм привело к открытию итальянским врачом Гальвани так называемого гальванического электричества.

История применения электрических явлений в медицине очень интересна тем, что она показывает, как новые открытия в области физических наук бывают вызваны задачами других наук (в данном случае медицины).

 

Первые теории электричества

Вместе с ускорившимся развитием опытного исследования электрических явлений возникают и теории этих явлений.

Конечно, еще до середины XVIII в. существовали некоторые соображения о природе электричества. Но они были весьма примитивными. В большинстве случаев электрические действия объяснялись наличием вокруг заряженных тел неких электрических атмосфер.

В середине XVIII в. появляются уже более содержательные теории электрических явлений. Эти теории можно разделить на две основные группы.

Первая группа - это теории электрических явлений, основанные на принципе дальнодействия.

Вторая группа - это теории, в основу которых положен принцип близкодействия.

Остановимся сначала на развитии теории дальнодействия, которая получила в XVIII в. почти всеобщее признание. Основоположниками теории дальнодействия были Франклин и петербургский академик Эпинус.

Франклин еще в 40-х г. XVIII в. построил теорию электрических явлений. Он предположил, что существует особая электрическая материя, представляющая собой некую тонкую, невидимую жидкость. Частицы этой материи обладают свойством отталкиваться друг от друга и притягиваться к частицам обычной материи, т. е. к частицам вещества, по современным понятиям.

Электрическая материя присутствует в телах в определенных количествах, и в этом случае ее присутствие не обнаруживается. Но если в теле появляется избыток этой материи, то тело электризуется положительно; наоборот, если в теле будет недостаток этой материи, то тело электризуется отрицательно. Название «положительное и отрицательное электричество», как уже упоминалось, принадлежит Франклину.

Электрическая материя, по Франклину, состоит из особо тонких частиц, поэтому она может проходить сквозь вещество. Особенно легко она проходит через проводники.

Из теории Франклина следует очень важное положение о сохранении электрического заряда. Действительно, для создания, например, отрицательного заряда на каком-либо теле нужно от него отнять некоторое количество электрической жидкости, которая должна перейти на другое тело и образовать там положительный заряд такой же величины. После соединения этих тел электрическая материя вновь распределится между ними так, чтобы эти тела стали электрически нейтральными.

Это положение Франклин демонстрировал на опыте. Два человека стоят на смоляном диске (для изоляции их от окружающих предметов и земли). Один человек натирает стеклянную трубку. Другой касается этой трубки пальцем и извлекает искру. Оба человека теперь оказываются наэлектризованными: один - отрицательным электричеством, другой - положительным. Но при этом их заряды равны по абсолютной величине. После соприкосновения люди потеряют свои заряды и станут электрически нейтральными.

Теория Франклина была развита Францем Эпинусом (1724 - 1802). При этом Эпинус как бы брал за образец теорию тяготения Ньютона.

Ньютон предположил, что между всеми частицами обычных тел действуют дальнодействующие силы. Эти силы центральные, т.е. они действуют по прямой, соединяющей частицы.

Эпинус же предполагает, что между частицами электрической материи также действуют центральные дальнодействующие силы. Только силы тяготения являются силами притяжения, силы же, действующие между частицами электрической материи, - силами отталкивания. Кроме того, между частицами электрической материи и частицами обычного вещества, так же как и у Франклина действуют силы притяжения. И эти силы аналогично силам тяготения являются дальнодействующими и центральными.

Далее Эпинус подобно Ньютону говорит, что введенные им силы нужно признать как факт и что в настоящее время нельзя объяснить, каким образом они действуют через пространство. Придумывать же необоснованные гипотезы он не желает. Здесь он полностью копирует Ньютона


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.072 с.