Механизмы поддержания гомеостаза — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Механизмы поддержания гомеостаза

2019-07-11 74
Механизмы поддержания гомеостаза 0.00 из 5.00 0 оценок
Заказать работу

Геном. Генотип. Кариотип

Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме. Так, у ряда видов членистоногих гап-лоидными являются самцы, развивающиеся из неоплодотворенных яйцеклеток.

При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей в виде определенных аллелей. Таким образом, генотип — это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе.

Рис. 3.67. Кариотипы организмов различных видов:

I — скерды, II — дрозофилы. III — человека

Кариотип — диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом (рис. 3.67). Ниже приведены количества хромосом соматических клеток некоторых видов организмов.

Если число хромосом в гаплоидном наборе половых клеток обозначить п, то общая формула кариотипа будет выглядеть как 2п, где значение п различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы). Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов (XX или ХО). Чаще различия касаются строения половых хромосом, обозначаемых разными буквами —X и Y (XX или XY).

Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,— генотип — это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи.

ВИДЫ ВЗАИМОДЕЙСТВИЯ АЛЛЕЛЬНЫХ ГЕНОВ

Различают полное доминирование, неполное доминирование, кодоминирование, аллельное исключение.

Аллельными генами называются гены, расположенные в идентичных локусах гомологичных хромосом. Ген может иметь одну, две и более молекулярных форм. Появление второй и последующих молекулярных форм является следствием мутации гена. Если ген имеет три и более молекулярных форм, говорят о множественном аллелизме. Из всего множества молекулярных форм у одного организма могут присутствовать только две, что объясняется парностью хромосом.

Полное доминирование

Полное доминирование — это вид взаимодействия аллельных генов, при котором фенотип гетерозигот не отличается от фенотипа гомозигот по доминанте, то есть в фенотипе гетерозигот присутствует продукт доминантного гена. Полное доминирование широко распространено в природе, имеет место при наследовании, например, окраски и формы семян гороха, цвета глаз и цвета волос у человека, резус-антигена и мн. др.

Наличие резус-антигена (резус-фактора) эритроцитов обусловливается доминантным геном Rh. То есть генотип резус-положительного человека может быть двух видов: или RhRh, или Rhrh; генотип резус-отрицательного человека — rhrh. Если, например, мать — резус-отрицательная, а отец резус-положительный и гетерозиготен по этому признаку, то при данном типе брака с одинаковой вероятностью может родиться как резус-положительный, так и резус-отрицательный ребенок.Р   

Между резус-положительным плодом и резус-отрицательной матерью может возникнуть резус-конфликт.

Неполное доминирование

Так называется вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву и имеет среднее (промежуточное) значение между ними. Имеет место при наследовании окраски околоцветника ночной красавицы, львиного зева, окраски шерсти морских свинок и пр.

Сам Мендель столкнулся с неполным доминированием, когда скрещивал крупнолистный сорт гороха с мелколистным. Гибриды первого поколения не повторяли признак ни одного из родительских растений, они имели листья средней величины.

При скрещивании гомозиготных красноплодных и белоплодных сортов земляники все первое поколение гибридов имеет розовые плоды. При скрещивании этих гибридов друг с другом получаем: по фенотипу — 1/4 красноплодных, 2/4 розовоплодных и 1/4 белоплодных растений, по генотипу — 1/4 АА, 1/2 Аа, 1/4 аа (и по фенотипу, и по генотипу соотношение 1:2:1). Соответствие расщепления по генотипу расщеплению по фенотипу является характерным при неполном доминировании, так как гетерозиготы фенотипически отличаются от гомозигот.

Кодоминирование — вид взаимодействия аллельных генов, при котором фенотип гетерозигот отличается как от фенотипа гомозигот по доминанте, так и от фенотипа гомозигот по рецессиву, и в фенотипе гетерозигот присутствуют продукты обоих генов. Имеет место при формировании, например, IV группы крови системы (АВ0) у человека.

Аллельным исключением называется отсутствие или инактивация одного из пары генов; в этом случае в фенотипе присутствует продукт другого гена (гемизиготность, делеция, гетерохроматизация участка хромосомы, в котором находится нужный ген)

Полимерия

Это вид взаимодействия двух и более пар неаллельных генов, доминантные аллели которых однозначно влияют на развитие одного и того же признака. Полимерное действие генов может быть кумулятивным и некумулятивным. При кумулятивной полимерии интенсивность значения признака зависит от суммирующего действия генов: чем больше доминантных аллелей, тем больше степень выраженности признака. При некумулятивной полимерии количество доминантных аллелей на степень выраженности признака не влияет, и признак проявляется при наличии хотя бы одного из доминантных аллелей. Полимерные гены обозначаются одной буквой, аллели одного локуса имеют одинаковый цифровой индекс, например А1а1А2а2А3а3.

Плейотропия — множественное действие генов. Плейотропное действие генов имеет биохимическую природу: один белок-фермент, образующийся под контролем одного гена, определяет не только развитие данного признака, но и воздействует на вторичные реакции биосинтеза других признаков и свойств, вызывая их изменение.

25,26,27.----Мутации – это изменения в ДНК клетки. Возникают под действием ультрафиолета, радиации (рентгеновских лучей) и т.п. Передаются по наследству, служат материалом для естественного отбора. отличия от модификаций

Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п.

Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия.

Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика.

Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом.

Полиплоидия – кратные изменения (в несколько раз, например, 12 → 24). У животных не встречается, у растений приводит к увеличению размера.

Анеуплоидия – изменения на одну-две хромосомы. Например, одна лишняя двадцать первая хромосома приводит к синдрому Дауна (при этом общее количество хромосом – 47).

Цитоплазматические мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность.

Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

28.---Наследование, сцепленное с полом — наследование какого-либо гена, находящегося в половых хромосомах. Наследование признаков, проявляющихся только у особей одного пола, но не определяемых генами, находящимися в половых хромосомах, называется наследованием, ограниченным полом.

29.---Определе́ние по́ла, или детермина́ция по́ла — биологический процесс, в ходе которого развиваются половые характеристики организма. Большинство организмов имеют два пола. Иногда встречаются также гермафродиты, сочетающие признаки обоих полов. Некоторые виды имеют лишь один пол и представляют собой самок, размножающихся без оплодотворения путём партеногенеза, в ходе которого на свет появляются также исключительно самки.

30.---На основании анализа результатов многочисленных эксперементов с дрозофилой Томас Морган сформулировал хромосомную теорию наследственности, сущность которой заключается в следующем:

Материальные носители наследственности – гены находяться в хромосомах, распологаются в них линейно на определенном расстоянии друг от друга.

Гены, расположенные в одной хромосоме, относятся к одной группе сцепления. Число групп сцепления соответствует гаплоидному числу хромосом.

Признаки, гены которых находятьс в одной хромосоме, наследуются сцеплено.

В потомстве гетерозиготных родителей новые сочетания генов, расположенных в дной паре хромосом, могут возникать в результате кроссинговера в процессе мейоза.

Частота кроссинговера, определяемая по проценту кроссоверных особей, зависит от расстояния между генами.

На основании линейного расположения генов в хромосоме и частоты кроссинговера как покозателя расстояния между генами можно построить карты хромосом.

Гены, локализованные в одной хромосоме, образуют группу сцепления и наследуются, как правило, вместе.

Гаструляция

 Один из механизмов гаструляции — инвагинация (впячивание части стенки бластулы внутрь зародыша)1 — бластула, 2 — гаструла.

Гаструляция (впячивание) — гаструла формируется в результате инвагинации клеток. В ходе гаструляции, клетки зародыша практически не делятся и не растут. Происходит активное передвижение клеточных масс (морфогенетические движения). В результате гаструляции формируются зародышевые листки (пласты клеток). Гаструляция приводит к образованию зародыша, называемого гаструлой.

Первичный органогенез

Первичный органогенез — процесс образования комплекса осевых органов. В разных группах животных этот процесс характеризуется своими особенностями. Например, у хордовых на этом этапе происходит закладка нервной трубки, хорды и кишечной трубки.

В ходе дальнейшего развития формирование зародыша осуществляется за счет процессов роста, дифференцировки и морфогенеза. Рост обеспечивает накопление клеточной массы зародыша. В ходе процесса дифференцировки возникают различно специализированные клетки, формирующие различные ткани и органы. Процесс морфогенеза обеспечивает приобретение зародышем специфической формы.

Постэмбриональное развитие

Постэмбриональное развитие бывает прямым и непрямым.

Прямое развитие — развитие, при котором появившийся организм идентичен по строению взрослому организму, но имеет меньшие размеры и не обладает половой зрелостью. Дальнейшее развитие связано с увеличением размеров и приобретением половой зрелости. Например: развитие рептилий, птиц, млекопитающих.

Непрямое развитие (личиночное развитие, развитие с метаморфозом) — появившийся организм отличается по строению от взрослого организма, обычно устроен проще, может иметь специфические органы, такой зародыш называется личинкой. Личинка питается, растет и со временем личиночные органы заменяются органами, свойственными взрослому организму (имаго). Например: развитие лягушки, некоторых насекомых, червей

постэмбриональное развитие сопровождается ростом

Геном. Генотип. Кариотип

Геномом называют всю совокупность наследственного материала, заключенного в гаплоидном наборе хромосом клеток данного вида организмов. Геном видоспецифичен, так как представляет собой тот необходимый набор генов, который обеспечивает формирование видовых характеристик организмов в ходе их нормального онтогенеза. Например, у некоторых видов появляются гаплоидные организмы, которые развиваются на основе одинарного набора генов, заключенного в геноме. Так, у ряда видов членистоногих гап-лоидными являются самцы, развивающиеся из неоплодотворенных яйцеклеток.

При половом размножении в процессе оплодотворения объединяются геномы двух родительских половых клеток, образуя генотип нового организма. Все соматические клетки такого организма обладают двойным набором генов, полученных от обоих родителей в виде определенных аллелей. Таким образом, генотип — это генетическая конституция организма, представляющая собой совокупность всех наследственных задатков его клеток, заключенных в их хромосомном наборе — кариотипе.

Рис. 3.67. Кариотипы организмов различных видов:

I — скерды, II — дрозофилы. III — человека

Кариотип — диплоидный набор хромосом, свойственный соматическим клеткам организмов данного вида, являющийся видоспецифическим признаком и характеризующийся определенным числом, строением и генетическим составом хромосом (рис. 3.67). Ниже приведены количества хромосом соматических клеток некоторых видов организмов.

Если число хромосом в гаплоидном наборе половых клеток обозначить п, то общая формула кариотипа будет выглядеть как 2п, где значение п различно у разных видов. Являясь видовой характеристикой организмов, кариотип может отличаться у отдельных особей некоторыми частными особенностями. Например, у представителей разного пола, имеются в основном одинаковые пары хромосом (аутосомы), но их кариотипы отличаются по одной паре хромосом (гетерохромосомы, или половые хромосомы). Иногда эти различия состоят в разном количестве гетерохромосом у самок и самцов (XX или ХО). Чаще различия касаются строения половых хромосом, обозначаемых разными буквами —X и Y (XX или XY).

Каждый вид хромосом в кариотипе, содержащий определенный комплекс генов, представлен двумя гомологами, унаследованными от родителей с их половыми клетками. Двойной набор генов, заключенный в кариотипе,— генотип — это уникальное сочетание парных аллелей генома. В генотипе содержится программа развития конкретной особи.

МЕХАНИЗМЫ ПОДДЕРЖАНИЯ ГОМЕОСТАЗА

Гомеостаз – это поддержание постоянства внутренней среды организма.

В основе гомеостаза лежит чувствительность организма к отклонению определённых параметров от заданного значения. Пределы допустимых колебаний гомеостатического параметра (гомеостатической константы) могут быть широкими и узкими. Узкие пределы: температура тела, рН крови, содержание глюкозы в крови. Широкие пределы: давление крови, масса тела, концентрация аминокислот в крови.

Специальные внутриорганизменные рецепторы (интерорецепторы) реагируют на отклонение параметров от заданных пределов. Такие интерорецепторы имеются внутри таламуса, в сосудах и в органах. В ответ на отклонение параметров они запускают восстановительные гомеостатические реакции.

14.--- Интерфаза.

Подготовка клетки к делению получила название интерфазы. Она состоит из трех периодов.

Пресинтетический период (G1) — наиболее продолжительная часть интерфазы. Он может продолжаться у различных видов клеток от 2—3 ч до нескольких суток. Этот период следует сразу же за предшествующим делением, во время него клетка растет, накапливая энергию и вещества для последующего удвоения ДНК.

  Синтетический период (S), который обычно длится 6—10 ч, включает в себя удвоение ДНК, белков, необходимых для формирования хромосом, а также увеличение количества РНК, К концу этого периода каждая хромосома уже состоит из двух идентичных хроматид, соединенных друг с другом в области центромеры, В этот же период удваиваются центриоли.

Постсинтетический период (G2) наступает после удвоения хромосом. Он длится 2—5 ч; за это время накапливается энергия для предстоящего митоза и синтезируются белки микротрубочек, которые впоследствии образуют веретено деления. Теперь клетка может приступать к митозу.

Прежде чем перейти к описанию способов деления клетки, рассмотрим процесс удвоения ДНК, в результате которого в синтетическом периоде образуются сестринские хроматиды.

Удвоение молекулы ДНК называют также репликацией или редупликацией. Во время репликации часть молекулы «материнской» ДНК расплетается на две нити с помощью специального фермента (рис. 46), причем это достигается разрывом водородных связей между комплементарными азотистыми основаниями: аденином — тимином и гуанином — цитозином. Далее к каждому нуклеотиду разошедшихся нитей ДНК фермент ДНК-полимераза подстраивает комплементарный ему нуклеотид. Таким образом, образуются две двуцепочечные молекулы ДНК, в состав каждой из которых входят одна цепочка «материнской» молекулы и одна новосинтезированная («дочерняя») цепочка. Эти две молекулы ДНК абсолютно идентичны.

«Расплести» для репликации сразу всю длинную молекулу ДНК невозможно. Поэтому репликация начинается сразу в нескольких местах молекулы ДНК; при этом синтезируются несколько коротких фрагментов «дочерней» нити, которые при помощи ферментов сшиваются в единую длинную молекулу.

Жизненный цикл, клетки. Митотический цикл. Апоптоз. Интерфаза. Пресинтетический период. Синтетический период. Постсинтетический период. Репликация.

1. Что такое апоптоз?

2.    Какой цикл называется митотическим?

3. Какие процессы происходят в клетке в интерфазу?

4. В какой период интерфазы происходит репликация ДНК?

Хромосомы были открыты в конце XIX в. ученым-самоучкой Вильгельмом Фридрихом Гофмейстером. Гофмейстер занимался книжной торговлей, но все свободное время проводил у микроскопа, изучая клетки. Он опубликовал такие замечательные работы по цитологии, что в 1863 г. ему предложили стать профессором ботаники Гейдельбергского университета. Гофмейстер обнаружил, что в начале процесса деления ядро клетки распадается на мелкие частички, которые можно окрасить специальными красителями. Он назвал их хромосомами (от греч, chroma — цвет, soma — тело).

15.-- Хроматин (греч. χρώματα — цвета, краски) — это вещество хромосом — комплекс ДНК, РНК и белков. Хроматин находится внутри ядра клеток эукариот и входит в состав нуклеоида у прокариот. Именно в составе хроматина происходит реализация генетической информации, а также репликация и репарация ДНК.[1]

Основную массу хроматина составляют белки гистоны. Гистоны являются компонентом нуклеосом, — надмолекулярных структур, участвующих в упаковке хромосом. Нуклеосомы располагаются довольно регулярно, так что образующаяся структура напоминает бусы. Нуклеосома состоит из белков четырех типов: H2A, H2B, H3 и H4. В одну нуклеосому входят по два белка каждого типа — всего восемь белков. Гистон H1, более крупный, чем другие гистоны, связывается с ДНК в месте её входа на нуклеосому.[2]

Нить ДНК с нуклеосомами образует нерегулярную соленоид-подобную структуру толщиной около 30 нанометров, так называемую 30 нм фибриллу. Дальнейшая упаковка этой фибриллы может иметь различную плотность. Если хроматин упакован плотно его называют конденсированным или гетерохроматином, он хорошо видим под микроскопом. ДНК, находящаяся в гетерохроматине не транскрибируется, обычно это состояние характерно для незначащих или молчащих участков. В интерфазе гетерохроматин обычно располагается по периферии ядра (пристеночный гетерохроматин). Полная конденсация хромосом происходит перед делением клетки.

Если хроматин упакован неплотно, его называют эу- или интерхроматином. Этот вид хроматина гораздо менее плотный при наблюдении под микроскопом и обычно характеризуется наличием транскрипционной активности. Плотность упаковки хроматина во многом определяется модификациями гистонов — ацетилированием и фосфорилированием

Считается, что в ядре существуют так называемые функциональные домены хроматина (ДНК одного домена содержит приблизительно 30 тысяч пар оснований), то есть каждый участок хромосомы имеет собственную «территорию». Вопрос пространственного распределения хроматина в ядре изучен пока недостаточно. Известно, что теломерные (концевые) и центромерные (отвечающие за связывание сестринских хроматид в митозе) участки хромосом закреплены на белках ядерной ламины.

16.---Хромосо́мы (др.-греч. χρῶμα — цвет и σῶμα — тело) — нуклеопротеидные структуры в ядре эукариотической клетки, в которых сосредоточена бо́льшая часть наследственной информации и которые предназначены для её хранения, реализации и передачи. Хромосомы чётко различимы в световом микроскопе только в период митотического или мейотического деления клетки. Набор всех хромосом клетки, называемый кариотипом, является видоспецифичным признаком, для которого характерен относительно низкий уровень индивидуальной изменчивости[1].

Хромосома образуется из единственной и чрезвычайно длинной молекулы ДНК, которая содержит линейную группу множества генов. Необходимыми функциональными элементами хромосомы эукариот являются центромера, теломеры и точки начала инициации репликации. Точки начала репликации (сайты инициации) и теломеры, находящиеся на концах хромосом, позволяют молекуле ДНК эффективно реплицироваться, тогда как в центромерах дочерние молекулы ДНК прикрепляются к митотическому веретену деления, что обеспечивает их точное расхождение по дочерним клеткам в митозе[2].

Исходно термин был предложен для обозначения структур, выявляемых в эукариотических клетках, но в последние десятилетия всё чаще говорят о бактериальных или вирусных хромосомах. Поэтому, по мнению Д. Е. Корякова и И. Ф. Жимулёва[3], более широким определением является определение хромосомы как структуры, которая содержит нуклеиновую кислоту и функция которой состоит в хранении, реализации и передаче наследственной информации. Хромосомы эукариот — это ДНК-содержащие структуры в ядре, митохондриях и пластидах. Хромосомы прокариот — это ДНК-содержащие структуры в клетке без ядра. Хромосомы вирусов — это молекула ДНК или РНК в составе капсида.

18 .---Характеристика овогенеза и сперматогенеза

Гаметогенез имеет несколько стадий. Сходство сперматогенеза и овогенеза как раз и заключается в том, что три стадии у них одинаковы.

1. Стадия размножения. Первичные клетки на этой стадии называются сперматогониями и овогониями, из них в последующем образуются мужские и женские половые клетки. Половые клетки несколько раз делятся путем митоза, и количество их значительно возрастает. Сперматогонии размножаются у мужчины в течение всего репродуктивного периода, а размножение овогоний происходит в эмбриональном периоде и наиболее интенсивно происходит во 2 - 5 месяц внутриутробного развития.

2. Стадия роста. В этот период клетки значительно увеличиваются в размерах. Сперматогонии и овогонии превращаются в сперматоциты и овоциты I порядка. Овоциты I порядка достигают больших размеров, поскольку накапливают питательные вещества.

3. Стадия созревания. На этой стадии происходят два следующих друг за другом деления - мейоз I и мейоз II. После первого деления образуются сперматоциты и овоциты II порядка, а после второго деления - сперматиды и зрелые яйцеклетки с тремя полярными тельцами, которые в процессе размножения не участвуют и погибают. При созревании один сперматоцит I порядка дает четыре сперматиды, а один овоцит I порядка образует одну яйцеклетку и три полярных тельца.

Эти особенности сперматогенеза и овогенеза имеют биологический смысл, который связан с разным назначением мужских и женских гамет. Неравномерное деление клеток при овогенезе (меньше) обеспечивает формирование крупной яйцеклетки, в ней накапливается большее количество питательных веществ, так как из оплодотворенного яйца будет развиваться новый организм.

При сравнительной характеристике овогенеза и сперматогенеза можно заметить, что сперматозоидов образуется значительно больше, и это также имеет биологический смысл.

Яйцеклетку достигает только один сперматозоид, проникает в нее и доставляет свой набор хромосом. Остальные же в процессе поиска яйцеклетки массово погибают.

При сравнении овогенеза и сперматогенеза становится понятным, почему сперматозоидам нет необходимости в запасании питательных веществ - их существование кратковременно, а подвижность должна быть высокой.

4. Стадия формирования. Она характерна только для сперматогенеза. Незрелая сперматида превращается в сперматозоид, приобретая свойственный ему вид. Образование сперматозоидов у мужчин начинается только в период полового созревания и происходит в течение всего года. Период развития сперматогоний в зрелые сперматозоиды составляет 74 дня.

Подробнее: http://www.probirka.org/biblio/polezno/5099-sravnitelnaya-charakteristika-ovogeneza-i-spermatogeneza.html

21.--- Основные понятия генетики

Генетика — наука о закономерностях наследственности и изменчивости. Датой «рождения» генетики можно считать 1900 год, когда Г. Де Фриз в Голландии, К. Корренс в Германии и Э. Чермак в Австрии независимо друг от друга «переоткрыли» законы наследования признаков, установленные Г. Менделем еще в 1865 году.

Наследственность — свойство организмов передавать свои признаки от одного поколения к другому.

Изменчивость — свойство организмов приобретать новые по сравнению с родителями признаки. В широком смысле под изменчивостью понимают различия между особями одного вида.

Признак — любая особенность строения, любое свойство организма. Развитие признака зависит как от присутствия других генов, так и от условий среды, формирование признаков происходит в ходе индивидуального развития особей. Поэтому каждая отдельно взятая особь обладает набором признаков, характерных только для нее.

Фенотип — совокупность всех внешних и внутренних признаков организма.

Ген — функционально неделимая единица генетического материала, участок молекулы ДНК, кодирующий первичную структуру полипептида, молекулы транспортной или рибосомной РНК. В широком смысле ген — участок ДНК, определяющий возможность развития отдельного элементарного признака.

Генотип — совокупность генов организма.

Локус — местоположение гена в хромосоме.

Аллельные гены — гены, расположенные в идентичных локусах гомологичных хромосом.

Гомозигота — организм, имеющий аллельные гены одной молекулярной формы.

Гетерозигота — организм, имеющий аллельные гены разной молекулярной формы; в этом случае один из генов является доминантным, другой — рецессивным.

Рецессивный ген — аллель, определяющий развитие признака только в гомозиготном состоянии; такой признак будет называться рецессивным.

Доминантный ген — аллель, определяющий развитие признака не только в гомозиготном, но и в гетерозиготном состоянии; такой признак будет называться доминантным.

22 .---Хромосомный уровень организации наследственного материала характеризуется особенностями морфологии и функций хромосом.

Геном - совокупность всех генов гаплоидного набора хромосом данного вида организма. Геномный уровень организации наследственного материала имеет особенности у прокариот и эукариот.

Генный уровень представлен совокупностью генов - элементарных единиц нУровни организации наследственного материала

Все наблюдаемое разнообразие рассмотренных типов наследования признаков объясняется тем, что в клетках организмов имеются отдельные гены, которые объединены в группы сцепления, или хромосомы. В совокупности хромосом заключено все многообразие генов организма (клетки), которые вступают в разные виды взаимодействия друг с другом. Соответственно этому наследственной структуре организмов (клеток) можно выделить как бы три уровня организации: генный, хромосомный и геномный.

Наследственный материал любой клетки (организма) дискретен, т. е. представлен отдельными функциональными единицами — г е н а м и. Каждый ген отвечает за развитие отдельного признака. Число генов, заключенных в наследственном материале, велико. Закономерность передачи всего генетического материала из поколения в поколение достигается благодаря тому, что отдельные гены существуют не разрозненно, а собраны в хромосомы, с которыми происходят строго определенные превращения в процессе размножения клеток и организмов. Поддержание постоянной структуры хромосом в ряду поколений свидетельствует о большом значении этого уровня организации материала наследственности. Хромосомный уровень организации наследственного материала присущ всем эукариотическим организмам. У прокариот основная масса генов сосредоточена в единственной кольцевидной хромосоме, которая по своему внутреннему строению отличается от хромосом эукариот.

Все хромосомы клетки (организма) объединены в набор — кариотип, поддержание постоянства которого обеспечивается митозом для клеток и мейозом с последующим оплодотворением для организмов, размножающихся половым путем. При половом размножении каждый родитель передает новому поколению в своих гаметах полный одинарный набор всех генов — геном. Объединение геномов родительских гамет при оплодотворении создает геномный уровень организации наследственного материала, который соответствует геотипу организма (клеткиаследственности и изменчивости.


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.096 с.