Энтропия. Определение, размерность. Стандартная энтропия вещества. Приближенная оценка изменения энтропии в химических реакциях. — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Энтропия. Определение, размерность. Стандартная энтропия вещества. Приближенная оценка изменения энтропии в химических реакциях.

2018-01-14 1554
Энтропия. Определение, размерность. Стандартная энтропия вещества. Приближенная оценка изменения энтропии в химических реакциях. 0.00 из 5.00 0 оценок
Заказать работу

Энтропия

Изменение энтальпии системы не может служить единственным критерием самопроизвольного осуществления химической реакции, поскольку многие эндотермические процессы протекают самопроизвольно. Иллюстрацией этого служит растворение некоторых солей (например, NH4NO3) в воде, сопровождающееся заметным охлаждением раствора. Необходимо учитывать еще один фактор, определяющий способность самопроизвольно переходить из более упорядоченного к менее упорядоченному (более хаотичному) состоянию.

Энтропия (S) – термодинамическая функция состояния, которая служит мерой беспорядка (неупорядоченности) системы. Возможность протекания эндотермических процессов обусловлена изменением энтропии, ибо в изолированных системах энтропия самопроизвольно протекающего процесса увеличивается ΔS > 0 (второй закон термодинамики)

 

Больцман определил энтропию как термодинамическую вероятность состояния (беспорядок) системы W. Энтропия связана с термодинамической вероятностью соотношением:

 
S = R · ln W

 

 

Размерность энтропии 1 моля вещества совпадает с размерностью газовой постоянной R и равна Дж∙моль–1∙K–1. Изменение энтропии *) в необратимых и обратимых процессах передается соотношениями ΔS > Q / T и ΔS = Q / T. Например, изменение энтропии плавления равно теплоте (энтальпии) плавления ΔSпл = ΔHпл/Tпл. Для химической реакции изменение энтропии аналогично изменению энтальпии

   

*) термин энтропия был введен Клаузиусом (1865 г.) через отношение Q / T (приведенное тепло).

Здесь ΔS° соответствует энтропии стандартного состояния. Стандартные энтропии простых веществ не равны нулю. В отличие от других термодинамических функций энтропия идеально кристаллического тела при абсолютном нуле равна нулю (постулат Планка), поскольку W = 1.

Энтропия вещества или системы тел при определенной температуре является абсолютной величиной. В табл. 4.1 приведены стандартные энтропии S° некоторых веществ.

энтропия зависит от:

· агрегатного состояния вещества. Энтропия увеличивается при переходе от твердого к жидкому и особенно к газообразному состоянию (вода, лед, пар).

· изотопного состава (H2O и D2O).

· молекулярной массы однотипных соединений (CH4, C2H6, н-C4H10).

· строения молекулы (н-C4H10, изо-C4H10).

· кристаллической структуры (аллотропии) – алмаз, графит.

Изменения энтропии в химических реакциях

Энтропия одного моля вещества в его стандартном состоянии при соответствующей температуре называется стандартной молярной энтропией. Стандартная молярная энтропия обозначается символом S" и имеет размерность ДжК-1 моль-1. В табл. 5.12 указаны стандартные молярные энтропии ряда элементов и соединений при температуре 25°С. Отметим, что стандартная молярная энтропия газов, как правило, имеет намного большие значения по сравнению с энтропией твердых тел. Энтропия любого фиксированного количества вещества увеличивается в такой последовательности:

Твердое вещество= Жидкость= Газ

Стандартные молярные энтропии иногда называют абсолютными энтропиями. Они не являются изменениями энтропии, сопровождающими образование соединения из входящих в него свободных элементов. Следует также отметить, что стандартные молярные энтропии свободных элементов (в виде простых веществ) не равны нулю.

Третий закон термодинамике утверждает, что энтропия идеального ионного кристалла при температуре абсолютного нуля (О К) равна нулю.

 

Скорость химической реакции (v) характеризуется изменением концентрации реагирующих веществ (моль/л или моль/см3) в единицу времени (сек., мин., ч.).

Для гомогенной (однородной) системы скорость химической реакции измеряется количеством веществ, вступивших в реакцию или образовавшихся в результате реакции за единицу времени в единице объема системы. Для гетерогенной системы скорость химической реакции измеряется количеством веществ, вступивших в реакцию или образовавшихся в результате реакции за единицу времени на единице поверхности раздела фаз.

Факторы, влияющие на скорость химической реакции

1) Природа реагирующих веществ (характер связи в молекулах реагентов);

2) Концентрация реагентов;

3) Температура;

4) Катализатор;

5) Давление (для газов);

6) Излучение (ИК-, УФ-, рентгеновское, радиоактивное и др.);

7) Площадь поверхности раздела фаз (для гетерогенных реакций).

Влияние концентрации реагирующих веществ выражается законом действия масс: при постоянной температуре скорость химической реакции, протекающей в однородной среде, пропорциональна произведению концентраций реагирующих веществ, возведенных в степени их стехиометрических коэффициентов.

Например, для обратимой гомогенной реакции, выражающейся уравнением aA + bB ↔ cC + dD, в соответствии с законом действия масс, можно записать выражение скорости прямой и обратной реакций:

где k1 и k2 – константы скоростей прямой и обратной реакций.

Физический смысл константы скорости заключается в том, что она показывает численное значение скорости химической реакции, с которой реагируют вещества при их концентрации (или произведении концентраций), равной единице. Константа скорости реакции зависит от природы реагентов, температуры, наличия катализатора, но не зависит от концентрации реагентов.

Химическое равновесие

Химические реакции по признаку обратимости делятся на необратимые и обратимые. К необратимым реакциям относятся такие реакции, которые протекают до тех пор, пока один из реагентов полностью не израсходуются. Признаками необратимых реакций, протекающих в растворах, являются: а) выпадение осадка, б) образование газа, в) образование слабого электролита.

Обратимыми реакциями называются такие реакции, которые протекают одновременно в двух взаимно противоположных направлениях. Для подобных реакций вместо знака равенства пользуются противоположно направленными стрелками (↔).

С течением времени скорость любой реакции, измеряется по убывающим концентрациям исходных веществ, будет уменьшаться, так как по мере взаимодействия веществ их концентрации уменьшаются (скорость прямой реакции). Если реакция является обратимой, то по мере увеличения концентрации продуктов ее скорость будет возрастать (скорость обратной реакции). Как только скорости прямой и обратной реакций становятся одинаковыми, в системе устанавливается химическое равновесие и дальнейшее изменение концентраций всех веществ, находящихся в системе, прекращается.

Количественной характеристикой состояния равновесия является константа химического равновесия К, которая определяется отношением констант скоростей прямой и обратной реакцией

В подавляющем большинстве случаев константы скоростей прямой и обратной реакций не равны. Константа равновесия – постоянная при данной температуре величина и определяет соотношение между равновесными концентрациями продуктов реакции и исходных веществ, возведенных в степени их стехиометрических коэффициентов.

Например, для процесса N2 + 3H2 ↔ 2NH3

Квадратной скобкой обозначена концентрация каждого вещества в момент равновесия, так называемая равновесная концентрация.

Константа равновесия зависит от природы реагирующих веществ и температуры. Катализатор не влияет на состояние равновесия. Присутствие катализатора в системе лишь изменяет время его достижения. В состоянии равновесия система может находиться до тех пор, пока не изменится хотя бы одно из внешних воздействий: температура, концентрация одного из реагентов, давление (для газов). Изменения, происходящие в равновесной системе в результате внешних воздействий, определяются принципом подвижного равновесия (принцип Ле-Шателье): внешнее воздействие на систему, находящуюся в состоянии равновесия, приводит к смещению этого равновесия в направлении, при котором эффект произведенного воздействия ослабляется.

На смещение равновесия оказывает влияние:

1) изменение температуры: эндотермический процесс ускоряется в большей степени при повышении температуры и, наоборот, при понижении температуры ускоряется экзотермический процесс;

2) изменение давления (для реакций, протекающих в газовой фазе): при повышении давления равновесие реакции смещается в направлении образования веществ, занимающих меньший объем, и, наоборот, понижение давления способствует процессу, сопровождающемуся увеличением объема. Если реакция протекает без изменения объема, то изменение давления в системе не оказывает влияние на химическое равновесие.

3) изменение концентрации: увеличение концентрации исходных веществ приводит к увеличению скорости прямой реакции, при этом протекающий в системе процесс завершится, когда скорости прямой и обратной реакций станут равны и установится новое равновесие. Уменьшение концентрации одного из продуктов реакции (вывод из системы) приводит к смещению равновесия в сторону его образования.

 

Критерием принципиальной осуществимости реакций является неравенство ΔGp, T < 0. Но это неравенство не является еще полной гарантией фактического течения процесса в данных условиях, не является достаточным для оценки кинетических возможностей реакции. Так, ΔGо298, H2O(г) = - 228,59 кДж/моль, а ΔGо298, AlI3(к) = -313;8 кДж/моль и, следовательно, при Т = 298 К и р = 1,013 • 105 Па возможны реакции, идущие по уравнениям:

Н2(г) + ½О2(г) = Н2О (1)

2Аl(к) + 3l2(к) = 2Аll3(к) (2)

Однако эти реакции при стандартных условиях идут только в присутствии катализатора (платины для первой и воды для второй). Катализатор как бы снимает кинетический "тормоз", и тогда проявляется термодинамическая природа вещества, Скорость химических реакций зависит от многих факторов, основные из которых – концентрация (давление) реагентов, температура и действие катализатора. Эти же факторы определяют и достижение равновесия в реагирующей системе.

Пример 1. Во сколько раз изменится скорость прямой и обратной реакции в системе:

2SO2(г) + O2(г) = 2SO3(г)

если объем газовой смеси уменьшить в три раза? В какую сторону сместится равновесие системы?

Решение. Обозначим концентрации реагирующих веществ: [SO2]= a, [О2] = b, [SO3] = с. Согласно закону действия масс скорости v прямой и обратной реакции до изменения объема:

vпр = Ка2b; vобр = К1с2.

После уменьшения объема гомогенной системы в три раза концентрация каждого из реагирующих веществ увеличится в три раза: [SO2] = 3а, [О2] = 3b; [SO3] = 3с. При новых концентрациях скорости v’ прямой и обратной реакции:

v’пр = К(3а)2(3b) = 27Ка2b; v’обр = К1(3с)2 = 9К1с2.

Отсюда:

Следовательно, скорость прямой реакции увеличилась в 27 раз, а обратной – только в девять раз. Равновесие системы сместилось в сторону образования SO3.

Пример 2. Вычислите, во сколько раз увеличится скорость реакции, протекающей в газовой фазе, при повышении температуры от 30 до 70оС, если температурный коэффициент реакции равен 2.

Решение. Зависимость скорости химической реакции от температуры определяется эмпирическим правилом Вант-Гоффа по формуле:

Следовательно, скорость реакции νТ2 при температуре 70оС больше скорости реакции νТ1 при температуре

30оС в 16 раз.

 

24. Изобарно-изотермический потенциал. Энтропийный и энтальпийный факторы процессов. Методы оценки возможности протекания химических процессов: по изменению энтальпии и энтропии, по изобарным потенциалам образования веществ.

Потенци а лы термодинам и ческие, определённые функции объёма (V), давления (р), температуры (Т), энтропии (S), числа частиц системы (N)и др. макроскопических параметров (xi), характеризующих состояние термодинамической системы. К П. т. относятся: внутренняя энергия U = U (S, V, N, xi); энтальпия Н = Н (S, р, N, xi); Гельмгольцева энергия (свободная энергия, или изохорно-изотермический потенциал, обозначается А или F) F = F (V, T, N, xi), Гиббсова энергия (изобарно-изотермический потенциал, обозначается Ф или G) G = G (p, Т, N, xi) и др. Зная П. т. как функцию указанных параметров, можно получить путём дифференцирования П. т. все остальные параметры, характеризующие систему, подобно тому как в механике можно определить компоненты действующих на систему сил, дифференцируя потенциальную энергию системы по соответствующим координатам. П. т. связаны друг с другом следующими соотношениями: F = UTS, Н = U + pV, G = F + pV. Если известен какой-либо один из Т. п., то можно определить все термодинамические свойства системы, в частности получить уравнение состояния. При помощи П. т. выражаются условия термодинамического равновесия системы и критерии его устойчивости).

Совершаемая термодинамической системой в какой-либо процессе работа определяется убылью П. т., отвечающего условиям процесса. Так, в условиях теплоизоляции (адиабатический процесс, S = const) элементарная работа dA равна убыли внутренней энергии: dA = — dU. При изотермическом процессе (Т = const) dA = — dF (в этом процессе работа совершается не только за счёт внутренней энергии, но и за счёт поступающей в систему теплоты). Часто процессы в системах, например химические реакции, идут при постоянных р и Т. В этом случае элементарная работа всех термодинамических сил, кроме сил давления, равна убыли термодинамического потенциала Гиббса (G), т. е. dA' = — dG.

Равенство dA = — dU выполняется как для квазистатических (обратимых) адиабатических процессов, так и для нестатических (необратимых). В остальных же случаях работа равна убыли П. т. только при квазистатических процессах, при нестатических процессах совершаемая работа меньше изменения П. т. Теоретическое определение П. т. как функций соответствующих переменных составляет основную задачу статистической термодинамики (см. Статистическая физика).

Метод П. т. широко применяется для получения общих соотношений между физическими свойствами макроскопических тел и анализа термодинамических процессов и условий равновесия в физико-химических системах. Термин "П. т." ввёл французский физик П. Дюгем (1884), сам же основатель метода П. т. Дж. У. Гиббс пользовался в своих работах термином "фундаментальные функции".

 


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.025 с.