Конструкции топочных экранов — КиберПедия 

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Конструкции топочных экранов

2018-01-29 272
Конструкции топочных экранов 0.00 из 5.00 0 оценок
Заказать работу

Топочные экраны получают до 50 % всего тепловосприятия рабочей среды и находятся в зоне наиболее высоких температур газов, что требует тщательного конструктивного выполнения для обеспечения надежной работы металла труб. По конструкции различают экраны гладкотрубные, газоплотные (которые могут быть выполнены двух типов: из таких же гладких труб, но с вваренными между ними проставками шириной 6¸12 мм или с применением плавниковых труб, сваренных между собой (см. рисунок 8.6)). Экраны из таких сваренных между собой панелей образуют монолитную цельносварную газоплотную конструкцию, их называют мембранными.

Для создания в топке зоны устойчивого воспламенения малореакционных топлив, требующих высокой температуры для их интенсивного горения, экраны всех типов на соответствующих участках покрывают огнеупорной массой с закреплением ее на приваренных к трубам шипах. Такие экраны называются футерованными экранами
(см. рисунок 8.6, г, д).

Гладкотрубные экраны применяются в паровых котлах всех систем, работающих под разрежением газового тракта. При естественной циркуляции в целях повышения надежности движения рабочей среды в трубах топочные экраны располагаются вертикально и в отдельных случаях круто наклонно.

Парообразующие поверхности нагрева прямоточных котлов выполняют вертикальными, горизонтальными и подъемно-опускными, поскольку здесь есть возможность организации движения пароводяной смеси со скоростью, предотвращающей нарушение гидравлических режимов.

 

а) гладкотрубные экраны; б) гладкотрубные экраны с сварными проставками; в) газоплотные экраны из плавниковых труб;
 
г) футерованный гладкотрубный экран;   д) футерованный мембранный экран.
1 - труба; 1' - плавниковая труба; 2 - огнеупорный бетон; 3 - тепловая изоляция; 4 – уплотнительный слой; 5 - металлическая проставка; 6 - приварные шипы; 7 - огнеупорная масса.  
Рисунок 8.6 - Конструкции топочных экранов
         

Газоплотные сварные экраны находят широкое применение в современных конструкциях котлов, имеют на 10¸15 % меньшую массу металла на единицу лучевоспринимающей поверхности по сравнению с гладкотрубными.

Футерованные экраны применяются в топках циклонных и с жидким шлакоудалением (см. рисунок 8.6, г, д). Для создания футерованного экрана к трубам приваривают шипы (прутки) d =10 мм и h =15¸25 мм. Шипы являются каркасом для крепления набивной массы из огнеупорного материала, отводящим от нее теплоту к экранным трубам.

 

Пароперегреватели котлов

Теплообменные устройства, служащие для нагрева пара, выходящего из котлоагрегата, до температуры, превышающей температуру насыщения при давлении в котле (tпп=440¸560 оС), называют пароперегревателем.

По тепловосприятию и конструкции различают пароперегреватели:

- конвективные (размещаемые в конвективных газоходах котла и получающие теплоту, главным образом, конвекцией);

- радиационные (размещаемые на стенах, потолке топочной камеры, в горизонтальном газоходе и получающие теплоту радиацией от газов);

- полурадиационные (размещаемые в верхней части топки на входе в горизонтальный газоход).

По назначению пароперегреватели делятся на: основные (в которых перегревается пар высокого и сверхкритического давления); промежуточные (для вторичного перегрева пара, частично отработавшего в турбине).

Конвективные пароперегреватели выполняются из стальных труб
dн =32¸42 мм (dст=5¸7 мм). В промежуточных пароперегревателях используют dн = 42¸50 мм (dст=4¸5 мм). Для пароперегревателей применяются гладкие трубы, из которых образуются змеевики с радиусами гибов труб не менее (1,9* d). Концы змеевиков приварены к коллекторам круглого сечения. Расстояние между рядами змеевиков составляет s1=(2¸5)* d. Змеевики выполняются одно - двух и многорядные (см. рисунок 8.7) и отличаются числом параллельных труб, образующих змеевик. При большой мощности котла пароперегреватели выполнены обычно в 3¸4 ряда труб.

 

а - однорядный;

б - двухрядный;
в - четырехрядный;

г - многорядный (ленточный).

 

 

Рисунок 8.7 - Типы конвективных змеевиков пароперегревателя

Количество тепла, воспринятого в конвективном пароперегревателе

, кДж/кг, (8.1)

где D пе – расход перегретого пара, кг/с;

– переизлучение теплоты из топки, кДж/кг, принимаем, что вся энергия излучения топочного объема, прошедшая ширмы, поглощается в конвективном пароперегревателе Þ = ;

кп, h пе – энтальпии пара на входе и на выходе из конвективного пароперегревателя, кДж/кг.

Ширмовые пароперегреватели (ШПП) являются радиационно - конвективными поверхностями, их тепловосприятие складывается из значительной доли радиационного излучения и доли конвективного теплообмена, так как газы омывают ширмы продольно - поперечным потоком со скоростью 5¸8 м/с. ШПП представляют собой систему из большого числа вертикальных труб (14¸50 шт.), образующих широкую плоскую ленту, которая имеет один гиб на 180° (см. рисунок 8.8). Ширмы размещаются на выходе из топочной камеры с шагом s=(17¸22)* d. Для исключения выхода отдельных труб из плоскости ширмы выполняется перевязка труб ширм в двух уровнях по высоте за счет вывода из ряда двух крайних (лобовых) труб и пропуска их с двух сторон снаружи ленты горизонтально за последний подъемный ряд труб. На горизонтальном участке эти трубы связаны между собой проставками и строго фиксируют остальные трубы в одной плоскости.

    1 - входной коллектор; 2 - выходной коллектор; 3, 5 - обвязочные трубы верхнего и нижнего уровней; 4 - трубы ширмы.  

 

Рисунок 8.8 - Конструкция ширмового пароперегревателя

 

Тепло, полученное прямым излучением из топки, учитывает взаимный теплообмен между топкой, ширмовым пароперегревателем, потолочным пароперегревателем в районе ширм и поверхностью нагрева за ширмами:

- , (8.2)

где - теплота, полученная ширмовой поверхностью прямым излучением из топки, определяется интенсивностью теплового потока в верхней части топки, величиной плоскости входного сечения ширм и конструктивной характеристикой ширм, кДж/кг;

- тепло излучения из топки и ширм на поверхность нагрева расположенную за ширмами (конвективный пароперегреватель), кДж/кг;

h в - коэффициенты неравномерности тепловосприятия по высоте топки;

b ш – коэффициент, учитывающий взаимный теплообмен между объемом топки и ширмовой поверхностью;

q л – среднее тепловое напряжение теплообменной поверхности, кВт/м2;

Fвок – лучевоспринимающая поверхность входного сечения ширм со стороны топки (площадь выходного окна топки), м2;

Bр – расчетный расход топлива, кг/с;

j ш – угловой коэффициент ширм;

b ш – коэффициент, учитывающий взаимный теплообмен между объемом топки и ширмовой поверхностью;

– выходная излучающая поверхность ширм, определяется как произведение высоты выходного окна за ширмами на ширину газохода, м2;

eп – поправочный коэффициент (для жидких топлив – 0,5, газа – 0,7);

– средняя температура газов в ширмах, К.

 

Радиационные пароперегреватели (РПП) располагаются на стенах и потолке топочной камеры, воспринимают лучистую теплоту и по конструкции мало чем отличается от экранов - состоят из труб, приваренных к коллекторам круглого сечения. РПП барабанного парового котла обычно занимает потолок топки, а если этого недостаточно, то его размещают и на вертикальных ее стенах (см. рисунок 8.9). Настенные перегреватели, выполненные в виде панели на всю высоту топки. Из-за сложного режима металла труб настенного перегревателя при сниженных нагрузках РПП располагают поверх экранных труб в верхней части топки.

В прямоточных паровых котлах РПП обычно полностью занимают верхнюю часть топки, потолок и стены горизонтального газохода.

Суммарное тепловосприятие РПП определяется как:

Qрпп=Qгг+ Qпк = + , (8.3)

где Qгг - тепловосприятие поверхностей нагрева, расположенных в горизонтальном газоходе, кДж/кг;

Qпк - тепловосприятие поверхностей в поворотной камере, кДж/кг;

qo - удельное теплонапряжение поверхности, кВт/м2;

- средняя температура газов в горизонтальном газоходе, К;

- площадь поверхности стен горизонтального газохода, закрытых экранами, м2;

- расчетный расход топлива, кг/с; - эффективная толщина излучения объема газов в поворотной камере, м.

1 - барабан; 2 - опускные трубы панели радиационной части пароперегревателя; 3 - подъемные радиационные трубы панелей;
4 - проем для горелки;
5 - потолочные трубы панели;
6 - необогреваемые перепускные трубы; 7 – пароохладитель;
8 - ширмы; 9, 10 - змеевики вертикального и горизонтального пакетов конвективной части пароперегревателя; 11 - коллектор перегретого пара; 12 и 13 - входной и выходной коллекторы подвесных труб; 14 - подвесные трубы.

 

 

Рисунок 8.9 - Схема движения пара в котле с естественной циркуляцией

 

Лекция

Тепловосприятие поверхностей нагрева.Компоновка пароперегрева-телей. Методы регулирования температуры перегретого пара.


Поделиться с друзьями:

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.027 с.