Термический и ледовый режим озер — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Термический и ледовый режим озер

2018-01-04 830
Термический и ледовый режим озер 0.00 из 5.00 0 оценок
Заказать работу

 

Основные черты теплового баланса озер. Нагревание и охлаждение озер происходит под воздействием составляющих теплового баланса.

Наряду с элементами теплового баланса на температуру по­верхности и ее распределение по вертикали и акватории озера существенное влияние оказывают глубина водоема, размеры вод­ной поверхности и расчленение береговой линии водоема бухтами, заливами, наличие островов и пр.

Малые озера обычно лучше защищены от действия ветра, по­этому и процессы ветрового перемешивания на них менее выра­жены, чем на крупных озерах.

Расчеты, произведенные в ГГИ, показывают, что за период, свободный ото льда, для озер, расположенных в различных райо­нах страны, наблюдается сравнительно устойчивое соотношение между слагаемыми теплового баланса, обусловленными испаре­нием, эффективным излучением, конвекцией и поглощенной водой суммарной солнечной радиацией. Во всех случаях для периода, свободного ото льда, максимум расхода тепла падает на испаре­ние, на которое расходуется 40—70% поглощенной водой суммарной солнечной радиации; на эффективное излучение расходуется порядка 25—35%, на турбулентный теплообмен с атмосферой 2—25%, и меньше всего затрачивается тепла на теплообмен с дном (0—4%).

Характеристика про­цесса нагревания и охлажде­ния воды в озерах. Смена на­гревания и охлаждения проис­ходит неодновременно во всей толще воды. Наиболее резкие изменения температуры наблюдаются на поверхности водоема, от­куда они под влиянием динамического и конвективного перемеши­вания, течений и волнения распространяются по всей толще воды.

Направление конвективного перемешивания, происходящего под влиянием разности плотностей воды на разных глубинах, будет различным в зависимости от того, выше или ниже 4° С (для прес­ных озер) температура к моменту возникновения конвекции.

Если температура воды озера от 0 до 4° С, то у поверхности, находится вода с более низкой температурой, а ниже в соответствии с изменением плотности располагаются слои с последовательно увеличивающей температурой, все более приближающейся к 4° С. В этом случае имеет место обратная термическая стратификация. С того момента, когда приходные составляющие теплового ба­ланса начинают превышать расходные, увеличивается температура поверхностных слоев, которые, нагреваясь до 4° С, как более тяже­лые опускаются вглубь, а на их место под влиянием конвекции под­нимаются более холодные массы воды.

Когда температура по всей толще воды озера достигнет 4° С, дальнейшее нагревание поверхностных слоев приведет к повыше­нию их температуры, но распространение тепла в глубину конвек­цией происходить уже не будет. Возникнет прямая термическая стратификация, характеризующаяся убыванием температуры воды от поверхности в глубину.

Явление постоянства температуры по глубине, устанавливающейся осенью после нарушения прямой стратификации и весной после нарушения обратной стратифика­ции, называют осенней и весенней гомотермией.

В результате суточного обмена тепла указанная картина не­сколько усложняется. Начиная с весны, после того как установится прямая температурная стратификация, в течение дня верхние слои воды будут нагреваться, а ночью, когда нагревание солнцем пре­кращается, охлаждаться. Этот процесс ведет, в конце концов, к вы­равниванию температуры в некотором поверхностном слое воды. В результате на нижней границе этого слоя температура резко из­меняется, образуя так называемый слой температурного скачка. Слой скачка в течение лета непостоянен; появляясь весной, он ле­том углубляется и исчезает лишь осенью, когда нагревание озера ослабевает.

Слоем скачка вся толща озерной воды разделяется на два слоя: верхний (эпилимнион) с малыми градиентами температуры из-за интенсивного перемешивания и нижний (гиполимнион) также с ма­лыми градиентами, но, наоборот, обусловленными слабым переме­шиванием.

Изменение температуры воды в озерах в течение года. В соответствии с годовым ходом составляющих теплового баланса температура воды имеет ясно выраженный годовой ход:

В годовом цикле изменения температуры воды можно выделить следующие периоды: 1) весеннего нагревания, 2) летнего нагревания, 3) осеннего охлаждения, 4) зимнего охлаждения.

Период весеннего нагревания начинается с момента, когда устанавливается направленный в воду тепловой поток. На замерзающих озерах весеннее нагревание воды начинается еще при наличии ледяного покрова за счет поглощения проникающей сквозь лед (после схода снега) солнечной радиации. Заканчивается период весеннего нагревания установлением темпе­ратуры максимальной плотности во всей толще озера.

Период летнего нагревания начинается с момента перехода гомотермии в прямую стратификацию. Перемешивание в это время осуществляется главным образом деятельностью ветра, при этом по мере усиления прямой стратифи­кации сопротивление перемешиванию возрастает и теплообмен с нижележащими слоями становится все более затруднительным. Особенно большое сопротивление перемешиванию оказывает обра­зующийся летом слой скачка, имеющий большие градиенты плот­ности и, следовательно, обладающий большой устойчивостью. Конвекция проявляется при этом только во время ночного охлаждения. В соответствии с характером распределения температуры по вер­тикали водная толща достаточно глубоких озер распадается на три слоя: эпилимнион, металимнион и гиполимнион.

Металимнион, является зоной температурного скачка. Нижняя граница металимниона неопределенна и постепенно пе­реходит в гиполимнион.

Период осеннего охлаждения начинается с момента появления отрицательного теплового потока и заканчивается установлением температуры наибольшей плотно­сти во всей толще озера.

Период зимнего охлаждения начинается с момента образова­ния обратной стратификации тем­пературы и на замерзающих озе­рах заканчивается с наступлени­ем ледостава. С установлением ледяного покрова охлаждение осуществляется путем теплопровод­ности через толщу снега и льда. Поскольку этот процесс идет мед­ленно, поступление тепла от дна начинает превышать расход пу­тем теплопроводности и в мелководных озерах часто наблюдается повышение температуры воды после ледостава.

Термические типы озер. Ледовые явления. Влияние озер на климат побережий. В зависимости от характера температурной стратификации озера могут быть разделены на следующие типы: 1) теплые с постоянной прямой стратификацией, 2) холодные с по­стоянной обратной стратификацией, 3) смешанные с переменной стратификацией по временам года.

С момента установления обратной стратификации при продолжающемся понижении температуры воздуха верхние слои воды охлаждаются до 0°С и начинается процесс замерзания озера.

Вначале лед образуется у берегов, на отмелях, в заливах, а за­тем ледяной покров распространяется и на более глубокие места. Так как замерзание озера может начаться только после того, как температура всей массы воды понизится до 4°С, а верхних слоев — до 0°С, тепловая инерция оказывает существенное влияние на сроки замерзания. В случае тихой погоды озеро сравнительно не­больших размеров, охлажденное в предшествующие дни, может по­крыться по всей поверхности тонкой ледяной пленкой в течение одной ясной морозной ночи. На крупных озерах процесс замерза­ния может продолжаться длительное время, а в отдельные годы наиболее глубокие части озера могут вообще не покрываться льдом (Ладожское озеро). Увеличение толщины ледяного покрова сна­чала происходит довольно быстро, а затем постепенно замедляется и, наконец, совсем прекращается.

С установлением положительного теплового баланса происхо­дит таяние и разрушение льда, а затем и вскрытие озера. Обычно в озерах лед тает на месте; в проточных озерах лед может увле­каться рекой, вытекающей из озера. Например, лед из Ладожского озера проходит по р. Неве и создает второй более поздний по вре­мени «ладожский ледоход».

Озера оказывают влияние на климат прилегающих к ним райо­нов. Это влияние определяется размером водной поверхности озера и объемом его водной массы. Испарение с водной поверхности в первую очередь влияет на влажность воздуха приозерного рай­она. Обладая большой тепловой инерцией, крупные, незамерзаю­щие водоемы смягчают климат прибрежных районов.

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.