Центрифугирование: определение, решаемые задачи, физика процесса центрифугирования. — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Центрифугирование: определение, решаемые задачи, физика процесса центрифугирования.

2018-01-03 677
Центрифугирование: определение, решаемые задачи, физика процесса центрифугирования. 0.00 из 5.00 0 оценок
Заказать работу

Центрифугирование — разделение неоднородных систем (напр., жидкость — твердые частицы) на фракции по плотности при помощи центробежных сил. Центрифугирование осуществляется в аппаратах, называемых центрифугами. Различают два метода Ц.: центробежное осаждение и фильтрование. Ц. проводят в центробежных машинах - центрифугах и жидкостных центробежных сепараторах. Осн. рабочий орган этих машин - осесимметричная оболочка, или ротор (барабан), вращающийся с большой частотой. В клинических и санитарно-гигиенических лабораториях центрифугирование используют для отделения эритроцитов от плазмы крови,сгустков крови от сыворотки, плотных частиц от жидкой части мочи и т. д. Для этой цели применяют или ручные центрифуги, или центрифуги с электроприводом, скорость вращения которых можно регулировать.
Ультрацентрифуги, скорость вращения роторов которых превышает 40 000 об/мин, применяют обычно в экспериментальной практике для разделения органелл клеток, отделения коллоидных частиц, макромолекулполимеров и т. д.

Принцип метода центрифугирования заключается в следующем. Частицы в растворе осаждаются (седиментация), когда их плотность выше плотности раствора, или всплывают (флотация), когда их плотность ниже плотности раствора. Чем больше разница в плотности, тем быстрее идет распределение частиц. Когда плотности частиц и раствора одинаковы (изопикнические условия), частицы остаются неподвижными. При малой разнице в плотности частицы можно разделить только в центрифуге, которая создает центробежную силу, во много раз превышающую силу земного притяжения.

 

Физические основы электрографии. Электрический вектор сердца. Представление о дипольном эквиваленте электрическом генераторе сердца, головного мозга и мышц. Электрические биопотенциалы, их особенности.

Живые ткани являются источником электрических потенциалов (биопотенциалов). Регистрация биопотенциалов тканей и органов с диагностической целью получила название электрографии. Такой общий термин употребляется сравнительно редко, более распространены конкретные названия соответствующих диагностических методов: электрокардиография (ЭКГ) – регистрация биопотенциалов, возникающих в сердечной мышце при ее возбуждении, электромиография (ЭМГ) – метод регистрации биоэлектрической активности мышц, электроэнцефалография (ЭЭГ) – метод регистрации биоэлектрической активности головного мозга и др. В большинстве случаев биопотенциалы снимаются электродами не непосредственно с органа (сердца, головного мозга), а с других, соседних тканей, в которых электрические поля этим органом создаются.В клиническом отношении это существенно упрощает саму процедуру регистрации, делая ее безопасной и несложной. Физический подход к электрографии заключается в создании (выборе) модели электрического генератора, которая соответствует картине «снимательных» потенциалов.Все сердце в электрическом отношении представляется как некоторый электрический генератор в виде реального устройства и как совокупность электрических источников в проводнике, имеющем форму человеческого тела. На поверхности проводника при функционировании эквивалентного электрического генератора будет электрическое напряжение, которое в процессе сердечной деятельности возникает на поверхности тела человека. Моделировать электрическую деятельность сердца вполне допустимо, если использовать дипольный эквивалентный электрический генератор. Дипольное представление о сердце лежит в основе теории отведений Эйнтхове-на. Согласно ей сердце есть таковой диполь с диполь-ным моментом, который поворачивается, изменяет свое положение и точку приложения за время сердечного цикла. В. Эйнтховен предложил снимать разности биопотенциалов сердца между вершинами равностороннего треугольника, которые приближенно расположены в правой и левой руке и левой ноге.По терминологии физиологов, разность биопотенциалов, регистрируемую между двумя точками тела, называют отведением. Различают I отведение (правая рука – левая рука), II отведение (правая рука – левая нога) и III отведение (левая рука – левая нога).По В. Эйнтховену, сердце расположено в центре треугольника. Так как электрический момент диполя – сердца – изменяется со временем, то в отведениях будут получены временные напряжения, которые и называют электрокардиограммами. Электрокардиограмма не дает представления о пространственной ориентации. Однако для диагностических целей такая информация важна. В связи с этим применяют метод пространственного исследования электрического поля сердца, называемый вектор-кардиографией. Вектор-кардиограмма – геометрическое место точек, соответствующих концу вектора, положение которого изменяется за время сердечного цикла.

 


Поделиться с друзьями:

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.008 с.