Гипсовые вяжущие вещества. Технология получения, особенности свойств и применения. — КиберПедия 

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Гипсовые вяжущие вещества. Технология получения, особенности свойств и применения.

2017-12-09 176
Гипсовые вяжущие вещества. Технология получения, особенности свойств и применения. 0.00 из 5.00 0 оценок
Заказать работу

Магнезиальные вяжущие вещества

Сырьем для получения магнезиальных вяжущих веществ является горная порода магнезит, состоящая преимущественно из углекислой соли магния в кристаллическом или аморфном состоянии.

В результате обжига при температуре 700... 800 °С происходит диссоциация кабоната магния и получается порошок — каустический магнезит:

MgC03 = MgO + со2

Каустический магнезит затворяют растворами хлористого или сернокислого магния, иногда для затворения применяют хлористый цинк, сернокислое железо и т.п.

При использовании сырья в виде доломита, представляющего собой двойную углекислую соль магния и кальция, изготавливают каустический доломит.

Магнезиальные вяжущие отличаются высокой плотностью —

2.8... 3,4 г/см3; их средняя насыпная плотность — 0,8... 1,1 г/см3. Они относятся к быстротвердеющим вяжущим — прочность магнезиальных вяжущих в растворе может достигать 80... 100 МПа.

Магнезиальные вяжущие в строительстве применяют для устройства теплых бесшовных (ксилолитовы) полов, основным заполнителем которых служат древесные опилки, а также для изготовления фибролита, теплоизоляционных материалов и т.п.

cвойства магнезиальных вяжущих веществ:

· их затворяют не водой, а водными растворами хлористого магния MgCl2 H 2O или сернокислого магния;

· твердеют только при положительной температуре более +12 °С и сравнительно быстро (начало схватывания не ранее 20 мин, окончание — не позднее 6 ч.);

· у каустического доломита сроки схватывания растянуты (начало схватывания через 3-10ч, окончание – через 8-20 ч.);

· хорошо сцепляются с органическими заполнителями (древесными опилками и стружками), придавая им повышенную стойкость против загнивания, возгорания и истирания;

· являются очень гигроскопичными, неводостойкими материалами, поэтому в настоящее время имеют ограниченное применение.

Портландцемент. Состав и классификация.

Сухой и мокрый способ производства, вопросы экономии тепловой энергии, химико-минеральный состав клинкера.

Химическая и физическая коррозия цементного камня

Коррозия цементного камня. Виды коррозии

Различают физическую, химическую, электрохимическую и биологическую коррозии.

Физическая коррозия

Это выветривание, растворение, разрушение вследствие температурных колебаний характерных для всех видов горных пород.

Коррозии растворения носит физико-химический характер (см. ниже коррозии выщелачивания).

Химическая коррозия

Агрессивными по отношению к цементному камню являются все кислоты и многие соли.

Этот вид коррозии имеет место чаще всего, а разрушение происходит наиболее интенсивно. Самым уязвимым веществом в цементном камне является известь. Однако связывание извести (скажем за счет SiO2) еще не исключает коррозии, поскольку она может восстанавливаться за счет отступления от гидратов кальция.

Кислоты и некоторые соли вступают в реакцию с Са(ОН)2 и образуют новые соединения, либо легко растворимые в воде, либо непрочные рыхлые, либо кристаллизующиеся со значительным

Все кислоты разрушают портландцементный камень

Са(ОН)2 + НСl = CaCl + 2 H2O

Са(ОН)2 + H2SO4 = CaSO4 + 2H2O

 

Хлористый кальций легко растворим, а CaSO4 может вступать во вза-имодействие с гидроаллюминатами кальция и образовывать гидросульфоаллюминат кальция. Последний кристаллизуется с увеличением объема.

Гипс также кристаллизуется с увеличением объема.

Хотя в пластовых водах нет непосредственно соляной и серной кислот, (но их образование можно предположить), зато имеется достаточное количество солей агрессивных по отношению к цементному камню. К таким солям относятся сульфаты (MgSO4, CaSO4), хлориды (MgCl2, CaCl2).

Агрессивный сероводород и углекислый газ, которые могут содержаться как в пластовых водах, так и в добываемых нефти и газе.

Рассмотрим основные виды химической коррозии и применение в связи с ними цементов.

Коррозия выщелачивания

Кристаллогидраты (гидросиликаты, алюминаты и ферриты кальция), образующиеся при взаимодействии с водой клинкерных минералов и составляющие вместе с наполнителями цементный камень, имеют значительную равновесную растворимость в воде. Это значит, что они остаются устойчивыми при контакте с водами, только в том случае, если в воде имеется достаточная концентрация Са(ОН)2. Если концентрация в воде Са(ОН)2 ниже равновесной, то у гидрата будут отщепляться молекулы извести и концентрация будет восстанавливаться до равновесно

Магнезиальная коррозия

Если в окружающей цементный камень среде содержатся вещества, образующие с Са(ОН)2 малорастворимые соединения, то концентрация извести в ней будет поддерживаться на очень низком уровне.

Са(ОН)2 + MgSO4 + 2Н2О = Mg(ОН)2 + Са SO4 × 2Н2О

Mg(ОН)2 и гипс имеют очень низкую растворимость в воде. Mg(ОН)2 сам по себе представляет рыхлое аморфное вещество. Если подобный процесс будет продолжаться – цементный камень разрушится. Это магнезиальная коррозия. Подобное действие но более слабое, оказывает и хлористый магний.

Углекислотная коррозия

В пластовых водах как правило присутствует то или иное количество углекислого газа. Он действует разрушающе, поскольку понижает содержание Са(ОН)2 окисляя ее сначала до СаСО3, которая мало растворима, что будет вызывать понижение основности гидратов цемента. При поступлении новых порций СО2, СаСО3 окисляется до бикарбоната [ Са (НСО3)2], который хорошо растворим. При незначительной концентрации Са2 в водах процесс может затухнуть. Однако если кислота содержится в пластовом газе, то вследствие большой проницающей способности, диффузии и осмоса возможно быстрое разрушение камня. Если процесс ограничивается до СаСО3, то низкоосновные, если до Са (НСО3)2 – т о высокоосновные (см. ниже).

Сульфатная коррозия

Это вид коррозии, который связан с образованием соединений кристаллизующихся с увеличением объема. Примером такой коррозии являются взаимодействие с сульфатами кальция и натрия. Известно, что гидроалюминаты кальция могут присоединять гипс и образовывать гидросульфоалюминат. Последний кристаллизуется с увеличением объема, что вызывает внутренние напряжения и разрушение цементного камня.

(3 CaO × Al2O3 × 12H2O + 3(CaSO4 × 2H2O) + 13H2O =

= 3CaO × Al2O3 × 3CaSO4 × 31H2O

Сероводородная коррозия

Это один из распространенных на нефтяных и газовых месторождениях видов коррозии. При сероводородной коррозии наблюдается образование малорастворимых сульфидов кальция, алюминия и железа. Это приводит к понижению равновесной концентрации Са(ОН)2, Al(OH)3, Fe(OH)3, что в свою очередь вызывает разрушение гидратов кальция.

Наиболее энергично образуется сульфид железа, поэтому для повышения стойкости против сероводородной коррозии следует ограничивать в цементах содержание окислов железа, марганца и других тяжелых металлов. По отношению к цементному камню безвредны силикаты, карбонаты, щелочи и их соли. Однако сильные щелочи действуют на аллюминаты.

Нефть и нефтепродукты не опасны, но если в них есть нафтеновые кислоты и сульфаты, то они также разрушают цементный камень.

Многокомпонентные композиционные вяжущие на основе портландцемента и гипсового вяжущего, активных минеральных добавок, в том числе отходов промышленности и местных материалов, ПАВ, особенности технологии и свойств

Свойства сталефибробетона и конструкций на его основе зависят, кроме того, от технологии производства: технологии приготовления сталефибробетонной смеси (либо без приготовления сталефибробетонной смеси), формования конструкций, условий твердения.

Разные исследователи при определении физико-механических характеристик сталефибробетона, в зависимости от условий экспериментов, получали различные результаты. Ниже приведены некоторые обобщенные краткие данные.

Прочность

Под прочностью материала понимается тот максимальный уровень напряжений, который может выдержать материал без существенных изменений в своей структуре при ожидаемых условиях работы. Прочностные характеристики сталефибробетона зависят от класса исходного бетона - матрицы, параметров фибрового армирования, характера поверхности фибры, её геометрии и размеров сечения элемента и их соотношения.

Прочность при сжатии. Рост прочности СФБ при сжатии прямо пропорционален классу бетона - матрицы, увеличению содержания фибры, уменьшению относительной длины и практически не зависит от их диаметра. По данным исследований расчетное сопротивление СФБ сжатию – Rfb может превысить призменную прочность исходного бетона – Rb от 40% до 2-х раз. Прочность при сжатии СФБ является контрольной характеристикой при проектировании СФБК и может быть выбрана в соответствии с классом СФБ по прочности на сжатие Bf или определена расчетом.

Прочность при растяжении СФБ растет прямо пропорционально увеличению содержания фибры и их длины, а также при увеличении прочности сцепления фибры с матрицей. Прочность СФБ при растяжении является одной из определяющих характеристик материала. Независимо от длины и объемного содержания фибры прочность СФБ при осевом растяжении (Rfbt) иссякает с появлением первой трещины. По данным специалистов Rfbt превышает прочность исходного бетона при растяжении Rbt до 5 – 6 раз. Прочность на растяжение может быть выбрана в соответствии с классом СФБ по прочности на растяжение Bft или определена расчетом.

Прочность на растяжение при изгибе является одним из важных показателей СФБ, который зависит от содержания фибры и её длины, прочности её сцепления с бетонной матрицей, класса бетонной матрицы и превышает прочность исходного бетона в 3,5-5 раз. Как другие характеристики СФБ, прочность СФБ при изгибе может быть выбрана в соответствии с классом СФБ по прочности на растяжение при изгибе Bftb или определена расчетом.

Динамическая прочность СФБ при сжатии (призменная) на 35% выше прочности исходного бетона. Она возрастает с увеличением объемного содержания фибры и уменьшением их относительной длины. Развитие трещин и разрушение в сталефибробетоне наступает медленнее, чем в железобетоне, более чем в 10 раз. Причем вязкость разрушения, характерная для СФБ при воздействии ударной нагрузки, до 40 раз выше аналогичной характеристики бетона.

По литературным данным предел выносливости сталефибробетонных конструкций выше железобетонных на 30% и составляет 0,95 Rbn

Деформативность

Силовые деформации. Показателем деформативности СФБ является модуль деформации – непостоянная величина и существенно зависящая от стадийности работы. Начальный модуль упругости СФБ зависит как от соответствующего показателя исходного бетона, так и от коэффициента фибрового армирования. Значение начального модуля упругости СФБ выше соответствующей характеристики бетона матрицы на 30% … 100%.

Деформативность СФБ характеризуется, помимо указанного выше, предельными деформациями сжатия efc,u и растяжения eft,u. Предельная сжимаемость СФБ efc,u превышает сжимаемость бетона до 3-х раз и составляет в среднем 12 x 10-3, предельная растяжимость СФБ eft,u существенно выше аналогичной характеристики бетона, по имеющимся данным она составляет 6 … 8 x 10-4.

Деформации ползучести СФБ ниже ползучести исходного бетона при сжатии на
10 … 21%, при растяжении - на 40 … 50%.

Объемные деформации усадки. Можно отметить, что фибра сдерживает деформации усадки бетона в СФБ и способствует их более равномерному протеканию. Снижение деформаций усадки СФБ по отношению к неармированному бетону, по оценкам специалистов, составляет 30 … 60%. При повышенных температурах усадка СФБ ниже усадки исходного бетона на 10 … 23%.

Трещиностойкость

Для СФБ характерна высокая трещиностойкость, которая зависит не только от объемного содержания фибры, но и от дисперсности армирования. Чем более однородна бетонная матрица и, чем выше уровень дисперсности армирования, тем выше, при прочих равных условиях, предел трещиностойкости СФБ, который до 20-ти раз может превышать трещиностойкость исходного бетона.

Долговечность

Долговечность материала определяются такими его свойствами как, морозостойкость, коррозионная стойкость, водонепроницаемость и, косвенно, трещиностойкость. По оценкам специалистов СФБ характеризуется высокими показателями долговечности.

По экспериментальным данным, морозостойкость СФБ при объемном коэффициенты армирования (mfv ) 0,01 в 7 раз выше по сравнению с исходным бетоном.

Водонепроницаемость СФБ, как другие его гидрофизические свойства, зависит от структуры материала, прямо пропорциональна дисперсности фибрового армирования и содержанию фибры в объеме материала конструкции. По оценкам специалистов, водонепроницаемость СФБ превышает эту характеристику бетона почти в 2 раза.

Коррозионнаяи фильтрационная стойкость СФБ определяются количеством фибровой арматуры и структурой порового пространства СФБ. Матрица СФБ обладает повышенными защитными свойствами по отношению к волокнам. Экспериментально доказано, что в СФБ образуются капилляры с размером не более 0,01 мм, а это делает его влагонепроницаемым, а значит и обладающим высокой коррозионной стойкостью, превышающей почти в 2 раза коррозионную стойкость исходного бетона.

Теплофизические свойства

Теплофизические свойства СФБ – теплопроводность lf, температуропроводность af, теплоемкость Сf, в общем случае зависят от объемного содержания фибры и влажности материала. Температуропроводность СФБ выше этого показателя исходного бетона до 16%; теплопроводность СФБ lf превышает теплопроводность исходного бетона l0 до 30%, теплоемкость СФБ практически равна теплоемкости бетона.

Истираемость

Исследования СФБ на истираемость свидетельствуют о структурном улучшении этого материала в сравнении с неармированным бетоном. Показатель истираемости улучшается, в среднем, в 2 раза сравнении с неармированным бетоном и фибры истираются совместно с бетонной матрицей.

Кавитационная стойкость

Кавитационная стойкость – это специфическое свойство СФБ, которое выделяет его из всех известных материалов. Эта характеристика в 2.5 раза выше, чем у неармированного или армированного другими способами бетона. Особенно она повышается при армировании стальными фибрами полимербетона. Для невысоких скоростей потока достаточной кавитационной стойкостью обладает СФБ и без полимерных добавок.

Особенности конструирования композитов на основе высокопористых матриц.Свойства и технология ячеистых фибробетонов. – многокомпонентные материалы, состоящие, как правило, из пластичной основы (матрицы), армированной наполнителями, обладающими высокой прочностью, жесткостью и т.д. Сочетание разнородных веществ приводит к созданию нового материала, свойства которого количественно и качественно отличаются от свойств каждого из его составляющих. Варьируя состав матрицы и наполнителя, их соотношение, ориентацию наполнителя, получают широкий спектр материалов с требуемым набором свойств. Многие композиты превосходят традиционные материалы и сплавы по своим механическим свойствам и в то же время они легче. Использование композитов обычно позволяет уменьшить массу конструкции при сохранении или улучшении ее механических характеристик.То, что малые добавки волокна значительно увеличивают прочность и вязкость хрупких материалов, было известно с древнейших времен. Во времена египетского рабства евреи добавляли солому в кирпичи, чтобы они были прочнее и не растрескивались при сушке на жарком солнце

Пожалуй, в каждом современном доме найдутся предметы мебели, сделанные из распространенного в наши дни композиционного материала – древесно-стружечных плит (ДСП), в которых матрица из синтетических смол наполнена древесными стружками и опилками. А наиболее известным на сегодняшний день композитом, вероятнее всего, является железобетон. Сочетание бетона и железных прутьев дает материал, из которого сооружают конструкции (пролеты мостов, балки и т.п.), которые выдерживают большие нагрузки, вызывающие растрескивание обычного бетона. Интересно, что первыми применять железо в качестве арматуры стали древние греки, причем армировали они мрамор. Когда архитектору Мнесиклу в 437 до н.э. понадобилось перекрыть пролеты длиной в 4–6 м, он замуровал в специальных канавках в мраморных плитах двухметровые железные стержни, чтобы перекрытия справились с напряжениями.

Компонентами композитов являются самые разнообразные материалы – металлы, керамика, стекла, пластмассы, углерод и т.п. Известны многокомпонентные композиционные материалы – полиматричные, когда в одном материале сочетают несколько матриц, или гибридные, включающие в себя разные наполнители. Наполнитель определяет прочность, жесткость и деформируемость материала, а матрица обеспечивает монолитность материала, передачу напряжения в наполнителе и стойкость к различным внешним воздействиям.По структуре композиты делятся на несколько основных классов: волокнистые, слоистые, дисперсноупрочненные, упрочненные частицами и нанокомпозиты. Волокнистые композиты армированы волокнами или нитевидными кристаллами – кирпичи с соломой и папье-маше можно отнести как раз к этому классу композитов. Уже небольшое содержание наполнителя в композитах такого типа приводит к появлению качественно новых механических свойств материала. Широко варьировать свойства материала позволяет также изменение ориентации размера и концентрации волокон. Кроме того, армирование волокнами придает материалу анизотропию свойств (различие свойств в разных направлениях), а за счет добавки волокон проводников можно придать материалу электропроводность вдоль заданной оси.

В слоистых композиционных материалах матрица и наполнитель расположены слоями, как, например, в особо прочном стекле, армированном несколькими слоями полимерных пленок.

Микроструктура остальных классов композиционных материалов характеризуется тем, что матрицу наполняют частицами армирующего вещества, а различаются они размерами частиц. В композитах, упрочненных частицами, их размер больше 1 мкм, а содержание составляет 20–25% (по объему), тогда как дисперсноупрочненные композиты включают в себя от 1 до 15% (по объему) частиц размером от 0,01 до 0,1 мкм. Размеры частиц, входящих в состав нанокомпозитов – нового класса композиционных материалов – еще меньше и составляют 10–100 нм.Композиты, в которых матрицей служит полимерный материал, являются одним из самых многочисленных и разнообразных видов материалов. Их применение в различных областях дает значительный экономический эффект. Например, использование ПКМ при производстве космической и авиационной техники позволяет сэкономить от 5 до 30% веса летательного аппарата. А снижение веса, например, искусственного спутника на околоземной орбите на 1 кг приводит к экономии 1000$. В качестве наполнителей ПКМ используется множество различных веществ.

А) Стеклопластики – полимерные композиционные материалы, армированные стеклянными волокнами, которые формуют из расплавленного неорганического стекла. В качестве матрицы чаще всего применяют как термореактивные синтетические смолы (фенольные, эпоксидные, полиэфирные и т.д.), так и термопластичные полимеры (полиамиды, полиэтилен, полистирол и т.д.). Эти материалы обладают достаточно высокой прочностью, низкой теплопроводностью, высокими электроизоляционными свойствами, кроме того, они прозрачны для радиоволн. Использование стеклопластиков началось в конце Второй мировой войны для изготовления антенных обтекателей – куполообразных конструкций, в которых размещается антенна локатора. В первых армированных стеклопластиках количество волокон было небольшим, волокно вводилось, главным образом, чтобы нейтрализовать грубые дефекты хрупкой матрицы. Однако со временем назначение матрицы изменилось – она стала служить только для склеивания прочных волокон между собой, содержание волокон во многих стеклопластиках достигает 80% по массе. Слоистый материал, в котором в качестве наполнителя применяется ткань, плетенная из стеклянных волокон, называется стеклотекстолитом.

Стеклопластики – достаточно дешевые материалы, их широко используют в строительстве, судостроении, радиоэлектронике, производстве бытовых предметов, спортивного инвентаря, оконных рам для современных стеклопакетов и т.п.

Б) Углепластики – наполнителем в этих полимерных композитах служат углеродные волокна. Углеродные волокна получают из синтетических и природных волокон на основе целлюлозы, сополимеров акрилонитрила, нефтяных и каменноугольных пеков и т.д. Термическая обработка волокна проводится, как правило, в три этапа (окисление – 220° С, карбонизация – 1000–1500° С и графитизация – 1800–3000° С) и приводит к образованию волокон, характеризующихся высоким содержанием (до 99,5% по массе) углерода. В зависимости от режима обработки и исходного сырья полученное углеволокно имеет различную структуру. Для изготовления углепластиков используются те же матрицы, что и для стеклопластиков – чаще всего – термореактивные и термопластичные полимеры. Основными преимуществами углепластиков по сравнению со стеклопластиками является их низкая плотность и более высокий модуль упругости, углепластики – очень легкие и, в то же время, прочные материалы. Углеродные волокна и углепластики имеют практически нулевой коэффициент линейного расширения. Все углепластики хорошо проводят электричество, черного цвета, что несколько ограничивает области их применения. Углепластики используются в авиации, ракетостроении, машиностроении, производстве космической техники, медтехники, протезов, при изготовлении легких велосипедов и другого спортивного инвентаря.

На основе углеродных волокон и углеродной матрицы создают композиционные углеграфитовые материалы – наиболее термостойкие композиционные материалы (углеуглепластики), способные долго выдерживать в инертных или восстановительных средах температуры до 3000° С. Существует несколько способов производства подобных материалов. По одному из них углеродные волокна пропитывают фенолформальдегидной смолой, подвергая затем действию высоких температур (2000° С), при этом происходит пиролиз органических веществ и образуется углерод. Чтобы материал был менее пористым и более плотным, операцию повторяют несколько раз. Другой способ получения углеродного материала состоит в прокаливании обычного графита при высоких температурах в атмосфере метана. Мелкодисперсный углерод, образующийся при пиролизе метана, закрывает все поры в структуре графита. Плотность такого материала увеличивается по сравнению с плотностью графита в полтора раза. Из углеуглепластиков делают высокотемпературные узлы ракетной техники и скоростных самолетов, тормозные колодки и диски для скоростных самолетов и многоразовых космических кораблей, электротермическое оборудование.

В) Боропластики – композиционные материалы, содержащие в качестве наполнителя борные волокна, внедренные в термореактивную полимерную матрицу, при этом волокна могут быть как в виде мононитей, так и в виде жгутов, оплетенных вспомогательной стеклянной нитью или лент, в которых борные нити переплетены с другими нитями. Благодаря большой твердости нитей, получающийся материал обладает высокими механическими свойствами (борные волокна имеют наибольшую прочность при сжатии по сравнению с волокнами из других материалов) и большой стойкостью к агрессивным условиям, но высокая хрупкость материала затрудняет их обработку и накладывает ограничения на форму изделий из боропластиков. Кроме того, стоимость борных волокон очень высока (порядка 400 $/кг) в связи с особенностями технологии их получения (бор осаждают из хлорида на вольфрамовую подложку, стоимость которой может достигать до 30% стоимости волокна). Термические свойства боропластиков определяются термостойкостью матрицы, поэтому рабочие температуры, как правило, невелики.

Применение боропластиков ограничивается высокой стоимостью производства борных волокон, поэтому они используются главным образом в авиационной и космической технике в деталях, подвергающихся длительным нагрузкам в условиях агрессивной среды.

Г) Органопластики – композиты, в которых наполнителями служат органические синтетические, реже – природные и искусственные волокна в виде жгутов, нитей, тканей, бумаги и т.д. В термореактивных органопластиках матрицей служат, как правило, эпоксидные, полиэфирные и фенольные смолы, а также полиимиды. Материал содержит 40–70% наполнителя. Содержание наполнителя в органопластиках на основе термопластичных полимеров – полиэтилена, ПВХ, полиуретана и т.п. – варьируется в значительно больших пределах – от 2 до 70%. Органопластики обладают низкой плотностью, они легче стекло- и углепластиков, относительно высокой прочностью при растяжении; высоким сопротивлением удару и динамическим нагрузкам, но, в то же время, низкой прочностью при сжатии и изгибе.

Важную роль в улучшении механических характеристик органопластика играет степень ориентация макромолекул наполнителя. Макромолекулы жесткоцепных полимеров, таких, как полипарафенилтерефталамид (кевлар) в основном ориентированы в направлении оси полотна и поэтому обладают высокой прочностью при растяжении вдоль волокон. Из материалов, армированных кевларом, изготавливают пулезащитные бронежилеты.

Органопластики находят широкое применение в авто-, судо-, машиностроении, авиа- и космической технике, радиоэлектронике, химическом машиностроении, производстве спортивного инвентаря и т.д.

Д) Полимеры, наполненные порошками. Известно более 10000 марок наполненных полимеров. Наполнители используются как для снижения стоимости материала, так и для придания ему специальных свойств. Впервые наполненный полимер начал производить доктор Бейкеленд (Leo H.Baekeland, США), открывший в начале 20 в. способ синтеза фенолформфльдегидной (бакелитовой) смолы. Сама по себе эта смола – вещество хрупкое, обладающее невысокой прочностью. Бейкеленд обнаружил, что добавка волокон, в частности, древесной муки к смоле до ее затвердевания, увеличивает ее прочность. Созданный им материал – бакелит – приобрел большую популярность. Технология его приготовления проста: смесь частично отвержденного полимера и наполнителя – пресс-порошок - под давлением необратимо затвердевает в форме. Первое серийное изделие произведено по данной технологии в 1916, это – ручка переключателя скоростей автомобиля «Роллс-Ройс». Наполненные термореактивные полимеры широко используются по сей день.

Сейчас применяются разнообразные наполнители так термореактивных, так и термопластичных полимеров. Карбонат кальция и каолин (белая глина) дешевы, запасы их практически не ограничены, белый цвет дает возможность окрашивать материал. Применяют для изготовления жестких и эластичных поливинилхлоридных материалов для производства труб, электроизоляции, облицовочных плиток и т.д., полиэфирных стеклопластиков, наполнения полиэтилена и полипропилена. Добавление талька в полипропилен существенно увеличивает модуль упругости и теплостойкость данного полимера. Сажа больше всего используется в качестве наполнителя резин, но вводится и в полиэтилен, полипропилен, полистирол и т.п. По-прежнему широко применяют органические наполнители – древесную муку, молотую скорлупу орехов, растительные и синтетические волокна. Для создания биоразлагающихся композитов в качество наполнителя используют крахмал.

Е) Текстолиты – слоистые пластики, армированные тканями из различных волокон. Технология получения текстолитов была разработана в 1920-х на основе фенолформальдегидной смолы. Полотна ткани пропитывали смолой, затем прессовали при повышенной температуре, получая текстолитовые пластины. Роль одного из первых применений текстолитов – покрытия для кухонных столов – трудно переоценить.

Основные принципы получения текстолитов сохранились, но сейчас из них формуют не только пластины, но и фигурные изделия. И, конечно, расширился круг исходных материалов. Связующими в текстолитах является широкий круг термореактивных и термопластичных полимеров, иногда даже применяются и неорганические связующие – на основе силикатов и фосфатов. В качестве наполнителя используются ткани из самых разнообразных волокон – хлопковых, синтетических, стеклянных, углеродных, асбестовых, базальтовых и т.д. Соответственно разнообразны свойства и применение текстолитов.При создании композитов на основе металлов в качестве матрицы применяют алюминий, магний, никель, медь и т.д. Наполнителем служат или высокопрочные волокна, или тугоплавкие, не растворяющиеся в основном металле частицы различной дисперсности.

Свойства дисперсноупрочненных металлических композитов изотропны –одинаковы во всех направлениях. Добавление 5–10% армирующих наполнителей (тугоплавких оксидов, нитридов, боридов, карбидов) приводит к повышению сопротивляемости матрицы нагрузкам. Эффект увеличения прочности сравнительно невелик, однако ценно увеличение жаропрочности композита по сравнению с исходной матрицей. Так, введение в жаропрочный хромоникелевый сплав тонкодисперсных порошков оксида тория или оксида циркония позволяет увеличить температуру, при которой изделия из этого сплава способны к длительной работе, с 1000° С до 1200° С. Дисперсноупрочненные металлические композиты получают, вводя порошок наполнителя в расплавленный металл, или методами порошковой металлургии.

Армирование металлов волокнами, нитевидными кристаллами, проволокой значительно повышает как прочность, так и жаростойкость металла. Например, сплавы алюминия, армированные волокнами бора, можно эксплуатировать при температурах до 450–500° С, вместо 250–300° С. Применяют оксидные, боридные, карбидные, нитридные металлические наполнители, углеродные волокна. Керамические и оксидные волокна из-за своей хрупкости не допускают пластическую деформацию материала, что создает значительные технологические трудности при изготовлении изделий, тогда как использование более пластичных металлических наполнителей позволяет переформование. Получают такие композиты пропитыванием пучков волокон расплавами металлов, электроосаждением, смешением с порошком металла и последующим спеканием и т.д.В 1970-х появились первые материалы, армированные нитевидными монокристаллами («усами»). Нитевидные кристаллы получают, протягивая расплав через фильеры. Используются «усы» оксида алюминия, оксида бериллия, карбидов бора и кремния, нитридов алюминия и кремния и т.д. длиной 0,3–15 мм и диаметром 1–30 мкм. Армирование «усами» позволяет значительно увеличить прочность материала и повысить его жаростойкость. Например, предел текучести композита из серебра, содержащего 24% «усов» оксида алюминия, в 30 раз превышает предел текучести серебра и в 2 раза – других композиционных материалов на основе серебра. Армирование «усами» оксида алюминия материалов на основе вольфрама и молибдена вдвое увеличило их прочность при температуре 1650° С, что позволяет использовать эти материалы для изготовления сопел ракет.

Армирование керамических материалов волокнами, а также металлическими и керамическими дисперсными частицами позволяет получать высокопрочные композиты, однако, ассортимент волокон, пригодных для армирования керамики, ограничен свойствами исходного материала. Часто используют металлические волокна. Сопротивление растяжению растет незначительно, но зато повышается сопротивление тепловым ударам – материал меньше растрескивается при нагревании, но возможны случаи, когда прочность материала падает. Это зависит от соотношения коэффициентов термического расширения матрицы и наполнителя.Армирование керамики дисперсными металлическими частицами приводит к новым материалам (керметам) с повышенной стойкостью, устойчивостью относительно тепловых ударов, с повышенной теплопроводностью. Из высокотемпературных керметов делают детали для газовых турбин, арматуру электропечей, детали для ракетной и реактивной техники. Твердые износостойкие керметы используют для изготовления режущих инструментов и деталей. Кроме того, керметы применяют в специальных областях техники – это тепловыделяющие элементы атомных реакторов на основе оксида урана, фрикционные материалы для тормозных устройств и т.д.

Керамические композиционные материалы получают методами горячего прессования (таблетирование с последующим спеканием под давлением) или методом шликерного литья (волокна заливаются суспензией матричного материала, которая после сушки также подвергается спеканию).

 

Стеклоцементные композиции. Свойства, особенности технологии и области применения стеклоцемента -роизводство стеклоцементных конструкций состоит из трех основных технологических процессов:

1. Приготовление цементной или полимерцементной суспензии, 2. Изготовление стеклоцемента и конструкций из него одним из выбранных приемов, 3. Уход за твердеющим стеклоцементом.

Для приготовления цементной суспензии любого состава используют строительные растворомешалки, как правило, малой емкости (50...80 л). Объясняется это, во-первых, тем, что изделия тонкостенные, следовательно, материалоемкость их невелика, во-вторых, цемент необходимо как можно быстрее уложить в дело, не допуская его схватывания.

Качество стеклоцемента прямо зависит от приготавливаемой цементной или полимерцементной суспензии. Поэтому необходим строгий контроль активности используемого цемента, качества добавок и водоцементного отношения, которое обычно составляет 0,4...0,6. По возможности следует снижать В/Ц, но без ущерба для качества пропитки стекловолокна.

При уменьшении В/Ц увеличивается прочность цементного камня в стеклоцементе, но ухудшается пропитка стекловолокнистых материалов. Для повышения пластичности цементной суспензии при низком В/Ц в состав можно вводить пластификаторы, что повышает удобство работы со стеклоцементом и качество склеивания волокон между собой. Добавки и пластификаторы вводят и состав цементной суспензии с водой затворения.

Основные методы изготовления стеклоцемента: смешивание компонентов с последующей укладкой смеси в форму;

контактное формование;

напыление компонентов стеклоцемента па форму; намотка;

центрифугирование; вибропогружеиие волокна; виброэкструзия; мокрое формование.

Каждый из перечисленных методов можно заканчивать прессованием, вакуумированием, вибрированием, гнутьем сырого стеклоцемента для придания нужной конфигурации, экструзией. Выбор того или иного технологического приема зависит от трех основных факторов: вида армирующего стекловолокнистого компонента; конфигурации стеклоцементной конструкции; назначения ее и требуемых физико-механических показателей стеклоцемента.Метод смешивания компонентов (стекловолокна и суспензии) применяют при использовании коротких стеклянных волокон: штапельного волокна или рубленого стеклоровинга. Трудность его реализации заключается в равномерном распределении волокон в цементной матрице и сохранении их прямолинейности в композиции.

Обычные приемы пере


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.146 с.