Защита человека от физических негативных факторов — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Защита человека от физических негативных факторов

2017-12-13 886
Защита человека от физических негативных факторов 0.00 из 5.00 0 оценок
Заказать работу

Задачей защиты человека от ОВПФ является снижение уровня вредных факторов до уровней, не превышающих ПДУ (ПДК), и риска появления опасных факторов до величин прием­лемого риска. Основные методы зашиты человека представлены на рисунке 1.

Если же исключить наличие ОВПФ при работе нельзя, ис­пользуют следующие приемы защиты:

• удаление человека на максимально возможное расстояние от источника ОВПФ;

• применение роботов, манипуляторов, дистанционного управления для исключения непосредственного контакта человека с источником ОВПФ;

• применение средств защиты человека.

Средства защиты человека подразделяются на:

• средства коллективной защиты (СКЗ), обеспечивающие защиты всех работающих на предприятии рабочих и служащих;

• средства индивидуальной защиты (СИЗ), обеспечивающие защиту одного человека, непосредственно выполняющего работу.

Конструкции средств защиты разнообразны и определяются видом ОВПФ.

Рисунок 1 – Методы защиты человека от ОВПФ

Защита от вибрации

Для защиты от вибрации необходимо применять следующие методы:

· снижение виброактивности машин;

· отстройка от резонансных частот;

· вибродемпфирование;

· виброгашение для высоких и средних частот;

· повышение жесткости системы – для низких и средних частот;

· виброизоляция;

· применение индивидуальных средств защиты.

Снижение виброактивности машин достигается изменением технологического процесса, применением машин с такими кинематическими схемами, при которых дина­мические процессы, вызываемые ударами, резкими ускорениями и т.п. были бы исключены или предельно снижены; хорошей динамической и статической балансировкой механизмов, смазкой и чистотой обработки взаи­модействующих поверхностей и т.п.

Отстройка от резонансных частот заключается в изменении режимов работы машины и соответственно частоты возмущающей вибросилы; собственной частоты колебаний машины путем изменения жесткости системы (например, установка ребер жесткости) или изменения массы системы (например, закрепление на машине дополнительных масс).

Вибродемпфирование – это метод снижения вибрации путем усиления в конструкции процессов внутреннего трения, рассеивающих колебательную энергию в результате необратимого преобразования ее в теплоту при деформациях, возникающих в материалах, из которых изготовлена конструкция. Вибродемпфирование осуществляется нанесением на вибрирующие поверхности слоя упруговязких материалов, обладающих большими потерями на внутреннее трение, – мягких покрытий (резина) и жестких (листовые пластмассы, листы алюминия); применением поверхностного трения (например, использование прилегающих друг к другу пластин), установкой специальных демпферов. Примером таких демпферов могут являться амортизаторы автомобилей, которые подавляют раскачку машины.

Виброгашение осуществляют путем установки агрегатов на массивный фундамент. Виброгашение наиболее эффективно при средних и высоких частотах вибрации. Этот способ нашел широкое применение при установке тяжелого оборудования (молотов, прессов, вентиляторов, насосов и т. п.).

Виброизоляция заключается в уменьшении передачи колеба­ний от источника возбуждения защищаемому объекту при помо­щи устройств, помещаемых между ними. Для виброизоляции чаще всего применяют виброизолирующие опоры типа упругих прокладок, пружин или их сочетания. Виброизолироваться может источник вибрации или рабочее место обслуживающего установку персонала. Для защиты от вибрации человека-оператора применяются разнообразные средства. На рисунке 2 дана классификация средств защиты оператора.

Рисунок 2 – Классификация средств защиты оператора

Средства коллективной защиты (СКЗ) располагаются между источником вибрации и оператором. К СКЗ оператора относят­ся подставки, сидения, кабины, рукоятки.

Защита от шума, инфра- и ультразвука

Для защиты от акустических колебаний (шума, инфра- и ультразвука) можно использовать следующие методы:

· снижение звуковой мощности источника звука;

· размещение рабочих мест с учетом направленности излучения звуковой энергии;

· удаление рабочих мест от источника звука;

· акустическая обработка помещений;

· звукоизоляция;

· применение глушителей;

· применение средств индивидуальной защиты.

Снижение звуковой мощности источника звука. Для снижения шума механизмов и машин применяют методы, аналогичные методам, снижающим вибрацию машин, т.к. вибрация является источником механического шума.

Аэродинамический шум, вызываемый движением потоков воздуха и газа и обтеканием им элементов механизмов и машин, – наиболее мощный источник шума, снижение которого в источнике наиболее сложно. Для уменьшения интенсивности генерации шума улучшают аэродинамическую форму элементов машин, обтекаемых газовым потоком, и снижают скорость движения газа.

Изменение направленности излучения шума. При размещении установок с направленным излучением необходима соответствующая ориентация этих установок по отношению к рабочим и населенным местам. Например, отверстие воздухозаборной шахты вентиляционной установки или устье трубы сброса сжатого газа необходимо располагать так, чтобы максимум излучаемого шума был направлен в противоположную сторону от рабочего места.

Удаление рабочих мест от источника звука. Увеличение расстояния от источника звука в 2 раза приводит к уменьшению уровня звука на 6 дБ.

Акустическая обработка помещения – это мероприятие, сни­жающее интенсивность отраженного от поверхностей помещения (стен, потолка, пола) звука. Для этого применяют звукопоглощающие облицовки поверхностей помещенияи штучные (объемные) поглотители различных конструкций, подвешиваемые к потолку помещения.

Установка звукопоглощающих облицовок снижает уровень шума на 6...8 дБ в зоне отраженного звука (вдали от его источника) и на 2...3 дБ в зоне превалирования прямого шума (вблизи от источника). Несмотря на такое относительно небольшое снижение уровня шума, применение облицовок целесообразно по следующим причинам: во-первых, спектр шума в помещении меняется за счет большей эффективности (8... 10 дБ) облицовок на высоких частотах: он делается более глухим и менее раздражающим; во-вторых, становится более заметным шум оборудования, а следовательно, появляется возможность слухового контроля его работы, становится легче разговаривать, улучшается разборчивость речи. По этим причинам помещения концертных залов подвергают акустической обработке.

Штучные звукопоглотители применяют при недостаточности свободных поверхностей помещения для закрепления звукопоглощающих облицовок. Поглотители различных конструкций, представляющие собой объемные тела, заполненные звукопоглощающим материалом (тонкими волокнами), подвешивают к потолку равномерно по площади.

Звукоизоляция. При недостаточности указанных выше мероприятий для снижения уровня шума до допустимых значений или невозможности их осуществления применяют звукоизоляцию. Снижение шума достигается за счет уменьшения интенсивности прямого звука путем установки ограждений, кабин, кожухов, экранов. Сущность звукоизоляции состоит в том, что падающая на ограждение энергия звуковой волны отражается в значительно большей степени, чем проходит через него. Звукоизоляция перегородки тем больше, чем она тяжелее (изготовлена из более плотного материала и толще) и чем выше частота звука.Перегородки выполняют из бетона, кирпича, дерева и т.п. Наиболее шумные механизмы и машины закрывают кожухами, изготовленными из конструкционных материалов – стали, сплавов алюминия, пластмасс и др., и облицовывают изнутри звукопоглощающим материалом.

Экран защищает только от прямой звуковой волны, его применение эффективно только в области превалирования прямого шума над отраженным. Поэтому экраны надо устанавливать между источником шума и рабочим местом, если они расположены недалеко друг от друга. Звуковые экраны широко применяют не только на производстве, но и в окружающей среде, например для защиты от шума транспортных потоков зоны пешеходных дорожек, проходящих вдоль магистрали. В качестве экранов, снижающих уровень шума, используются лесозащитные полосы, поглощающие звук. Лесозащитные полосы должны быть сплошными, без промежутков, через которые может проникать шум. Для этого деревья высаживают в несколько рядов (чем шире полоса лесных насаждений, тем лучше) в шахматном порядке, снизу в зоне оголенной части ствола дерева высаживают кустарник. Эффективность снижения шума лесными насаждениями уменьшается зимой, когда деревья сбрасывают листву.

Глушители применяют для снижения аэродинамического шума. Эффективность глушителей может достигать 30...40 дБ.

При наличии в помещении одинаковых источников, удаление половины из них снижает уровень звука в помещении на 3 дБ. При наличии же в помещении источников звука, сильно различающихся по своей звуковой мощности, суммарный уровень звукового давления определяет в основном источник с наибольшей звуковой мощностью.

Таким образом, для радикального снижения уровня шума на рабочем месте нужно удалить или заглушить наиболее шумный источник. Так, удаление источника шума в 100 дБ уменьшит уровень шума немногим менее чем на 20 дБ.

Средства индивидуальной защиты. К СИЗ от шума относят ушные вкладыши, наушники и шлемы.

Особенности защиты от инфра- и ультразвука

В принципе, для защиты от инфра- и ультразвука применимы методы для защиты от шума, изложенные выше.

Однако для защиты от низких инфразвуковых частот звукоизоляция крайне неэффективна – требуются очень толстые и массивные звукоизолирующие перегородки. Также неэффективны звукопоглощение и акустическая обработка помещений. Поэтому основным методом борьбы с инфразвуком является борьба в источнике его возникновения.

Другими мероприятиями по борьбе с инфразвуком являются:

• повышение быстроходности машин, что обеспечивает перевод максимума излучения в область слышимых частот, где становятся эффективными звукоизоляция и звукопоглощение;

• устранение низкочастотных вибраций;

• применение глушителей реактивного типа.

Ультразвук из-за очень высоких частот быстро поглощается в воздухе и материалах конструкций, поэтому он распространяется на небольшие расстояния. Для защиты от ультразвука очень эф­фективной является звукоизоляция и звукопоглощение. Для звукоизоляции требуются тонкие перегородки. Обычно источники ультразвука заключают в кожухи из тонкой стали, алюминия (толщиной 1 мм), обклеенные внутри резиной. Применяют также эластичные кожухи из нескольких слоев резины общей толщиной 3,5 мм. Эффективность таких ко­жухов может достигать 60...80 дБ. Применяют также экраны, расположенные между источником и работающими.

Защита от электромагнитных полей и излучений

Защита от электромагнитных полей и излучений имеет общие принципы и методы, но в зависимости от частотного диапазона и характеристик излучения характеризуется рядом особенностей.

В частности, следует различать особенности защиты от:

• переменных электромагнитных полей;

• постоянных электрических и магнитных полей;

• лазерных излучений;

• инфракрасных (тепловых) излучений;

• ультрафиолетовых излучений.

Общими методами защиты от электромагнитных полей и из­лучений являются следующие:

• уменьшение мощности генерирования поля и излучения непосредственно в его источнике, в частности за счет при­менения поглотителей электромагнитной энергии (этот метод применим, если генерируется энергия, избыточная для реализации технологического процесса или устройства);

• увеличение расстояния от источника излучения;

• уменьшение времени пребывания в поле и под воздействием излучения;

• экранирование излучения;

• применение средств индивидуальной защиты.

Защита от переменных электромагнитных полей и излучений

Увеличение расстояния от источника излучения. В дальней зоне излучения, т.е. на расстояниях примерно больших 1/6 длины волны излучения, плотность потока энергии (ППЭ) уменьшается обратно пропорционально квадрату расстояния, а напряженности электрического и магнитного полей – обратно пропорционально расстоянию. Т.е. при увеличении расстояния от источника излучения в 2 раза ППЭ уменьшается в 4 раза, а напряженности в 2 раза.

Уменьшение мощности излучения обеспечивается правильным выбором генератора (мощность генератора целесообразно выбирать не более той, которая необходима для реализации технологического процесса и работы устройства). В тех случаях, когда необходимо уменьшить мощность излучения генератора, для излучений радиочастотного диапазона применяют поглотители мощности, которые ослабляют энергию излучения до необходимой степени на пути от генератора к излучающему устройству.

Подъем излучателей и диаграмм направленности излучения, блокирование излучения. Излучающие антенны необходимо поднимать на максимально возможную высоту и не допускать направления луча на рабочие места и территорию предприятия.

Для защиты от электрических полей промышленной частоты необходимо увеличивать высоту подвеса фазных проводов линий электропередач (ЛЭП), уменьшать расстояние между ними и т.д.

Экранирование излучений. Экранируют либо источники излу­чения, либо зоны, где может находиться человек. Экраны могут быть замкнутыми (полностью изолирующими излучающее устройство или защищаемый объект) или незамкнутыми, различной формы и размеров, выполненными из сплошных, перфорированных, сотовых или сетчатых материалов. Для исключения электромагнитного загрязнения окружающей среды и территории предприятия окна помещений, в которых проводятся работы с электромагнитными излучателями, экранируют с помо­щью сетчатых или сотовых экранов.

Наиболее часто в технике защиты от электромагнитных полей применяют металлические сетки. Они легки, прозрачны, поэтому обеспечивают возможность наблюдения за технологическим процессом и излучателем, пропускают воздух, обеспечивая охлаждение оборудования за счет естественной или искусственной вентиляции.

Средства индивидуальной защиты. К СИЗ, которые применя­ют для защиты от электромагнитных излучений, относят: радиозащитные костюмы, комбинезоны, фартуки, очки, маски и т.д.. Данные СИЗ используют метод экранирования.

Радиозащитные костюмы, комбинезоны, фартуки в общем случае шьются из хлопчатобумажного материала, вытканного вместе с микропроводом, выполняющим роль сетчатого экрана. Шлем и бахилы костюма сделаны из такой же ткани, но в шлем спереди вшиты очки и специальная проволочная сетка для облегчения дыхания.

Эффективность костюма может достигать 25...30 дБ. Для защиты глаз применяют очки специальных марок с металлизированными стеклами. Поверхность стекол покрыта пленкой диоксида олова. В оправе вшита металлическая сетка, и она плотно прилегает к лицу для исключения проникновения излучения сбоку. Эффективность очков оценивается в 25...35 дБ.

Защита от постоянных электрических и магнитных полей

Так же как и для других видов физических полей, защита от постоянных электрических и магнитных полей (ЭСП и МСП) использует методы защиты временем, расстоянием и экранированием.

Защита от лазерного излучения

Для выбора средств защиты лазеры классифицируются по степени опасности:

• класс I (безопасные) – выходное излучение не представляет опасности для глаз и кожи;

• класс II (малоопасные) – выходное излучение представляет опасность для глаз прямым и зеркально отраженным излучением;

• класс III (опасные) – опасно для глаз прямое, зеркальное, а также диффузно отраженное излучение на расстоянии 10 см от диффузно отражающей поверхности и для кожи прямое и зеркально отраженное облучение;

• класс IV (высокоопасные) – опасно для кожи диффузно отраженное излучение на расстоянии 10 см от отражающей поверхности.

Энергия лазерного луча уменьшается с расстоянием.

Наиболее эффективным методом защиты от ЛИ является экранирование. Луч лазера передается к мишени по волноводу (световоду) или огражденному экраном пространству.

Для снижения уровня отраженного излучения линзы, призмы и другие предметы.

Средства индивидуальной защиты применяются при недоста­точности для защиты средств коллективной защиты. К СИЗ относятся технологические халаты, перчатки (для защиты кожных покровов), специальные очки, маски, щитки (для защиты глаз). Халаты изготовляют из хлопчатобумажной ткани белого, светло-зеленого или голубого цвета. Очки снабжены оранжевыми, сине-зелеными и бесцветными стеклами специальных марок, обеспечивающими защиту от лазерного излучения определенных диапазонов длин волн. Поэтому выбор очков должен соответствовать длине волны лазерного излучения.

Защита от инфракрасного (теплового) излучения

Для защиты от теплового излучения применяются СКЗ и СИЗ. Основными мето­дами защиты являются: теплоизоляция рабочих поверхностей источников излучения теплоты, экранирование источников или рабочих мест, воздушное душирование рабочих мест, радиационное охлаждение, мелкодисперсное распыление воды с созда­нием водяных завес, общеобменная вентиляция, кондициониро­вание.

Средства защиты от теплового излучения должны обеспечивать: тепловую облученность на рабочих местах не более 0,35 кВТ/м2, температуру поверхности оборудования не более 35°С при температуре внутри источника теплоты до 100ºС и 45 °С при температуре внутри источника теплоты более 100ºС.

Теплоизоляция горячих поверхностей (оборудования, сосудов, трубопроводов и т. д.) снижает температуру излучающей поверх­ности и уменьшает общее выделение теплоты, в том числе ее лучистую часть, излучаемую в инфракрасном диапазоне ЭМИ. Для теплоизоляции применяют материалы с низкой теплопро­водностью.

Теплозащитные экраны применяют для экранирования источ­ников лучистой теплоты, защиты рабочего места и снижения температуры поверхностей предметов и оборудования, окружаю­щих рабочее место. Теплозащитные экраны поглощают и отра­жают лучистую энергию.

Воздушное душирование представляет собой подачу на рабо­чее место приточного прохладного воздуха в виде воздушной струи, создаваемой вентилятором. Могут применяться стацио­нарные источники струи и передвижные в виде перемещаемых вентиляторов. Струя может подаваться сверху, снизу, сбоку и веером.

Средства индивидуальной защиты. Применяется теплозащитная одежда из хлопчатобумажных, льняных тканей. Для защиты от инфракрасного излучения высоких уровней используют отражающие ткани, на поверхности которых нанесен тонкий слой металла. Для работы в экстремальных условиях (тушение пожаров и др.) используются костюмы с повышенными теплозащитными свойствами.

Защита от ультрафиолетового излучения

Для защиты от ультрафиолетового излучения применяют специальные светофильтры, не пропускающие ЭМИ ультрафиолетового диапазона. Светофильтрами снабжаются смотровые окна установок, внутри которых возникает излучение УФ-диапазона (установки газо-электросварки и резки, плазменной обработки материала; печи, использующие в качестве нагреватель­ных элементов мощные лампы; устройства накачки лазеров). Применяются также противосолнечные экраны и навесы.

В качестве средств индивидуальной защиты применяются светозащитные очки и щитки, для защиты кожи – защитная одежда, рукавицы, специальные кремы. Наиболее характерно применение таких СИЗ при проведении газо- и электросварочных работ.

Защита от ионизирующих излучений (радиации)

Для защиты от ионизирующих излучений применяют следующие методы и средства:

• снижение активности (количества) радиоизотопа, с которым работает человек;

• увеличение расстояния от источника излучения;

• экранирование излучения с помощью экранов и биологических защит;

• применение средств индивидуальной защиты.

Экранирование ионизирующего излучения. Если указанных мер защиты временем, расстоянием, количеством недостаточно для снижения уровня излучения до допустимых величин, между источником излучения и защищаемым объектом (человеком) устанавливают защиту (экраны). Мощность дозы уменьшается в экране по экспоненциальному закону:

Выбор материала защитного экрана определяется видом и энергией излучения.

Альфа-излучение. Альфа-частицы тяжелые, поэтому, хотя и обладают высокой ионизирующей способностью, быстро теряют свою энергию. Для защиты от альфа-излучения достаточно 10 см слоя воздуха. При близком расположении от альфа-источника обычно применяют экраны из органического стекла. Однако распад альфа-нуклида может сопровождаться бета- и гамма-излучением. В этом случае должна устанавливаться защита от этих видов излучений.

Бета-излучение. Для защиты от бета-излучения рекомендует­ся использовать материалы с малой атомной массой (алюминий, плексиглас, карболит), которые дают наименьшее тормозное гамма-излучение, обычно сопровождающее поглощение бета-частиц. Для комплексной защиты от бета- и тормозного гамма-излучения применяют комбинированные двух- и многослойные экраны, у которых со стороны источника излучения устанавливают экран из материала с малой атомной массой, а за ним – с большой атомной массой (свинец, сталь и т.д.).

Гамма- и рентгеновское излучение. Для защиты от гамма- и рентгеновского излучения, обладающих очень высокой проникающей способностью, применяют материалы с большой атомной массой и плотностью (свинец, вольфрам и пр.), а также сталь, железо, бетон, чугун, кирпич. Однако, чем меньше атомная масса вещества экрана и чем меньше плотность защитного материала, тем для требуемой кратности ослабления требуется большая толщина экрана.

Нейтронное излучение. Лучшими для защиты от нейтронного излучения являются водородосодержащие вещества, т. е. вещества, имеющие в своей химической формуле атомы водорода. Обычно применяют воду, парафин, полиэтилен. Кроме того, нейтронное излучение хорошо поглощается бором, бериллием, кадмием, графитом. Поскольку нейтронные излучения сопровождаются гамма-излучениями, необходимо применять многослойные экраны из различных материалов: свинец-полиэтилен, сталь-вода и т.д. В ряде случаев для одновременного поглощения нейтронного и гамма-излучений применяют водные растворы гидроокисей тяжелых металлов, например гидроокиси железа Fe2(OH)3.

Конструкции защитных устройств разнообразны. Они могут выполняться в виде защитных боксов, сейфов для хранения радиоактивных препаратов, передвижных и стационарных экранов. При выделении ра­диоактивной пыли и газов боксы снабжаются вытяжной венти­ляцией.

Помещения, предназначенные для работы с радиоактивны­ми препаратами, должны быть отдельными, изолированными от других помещений и специально оборудованными. Стены, потолки и двери делают гладкими, не имеющими пор и трещин. Все углы помещения закругляют для облегчения уборки поме­щения от радиоактивной пыли. Стены покрывают масляной краской на высоту 2 м, а при поступлении в воздушную среду помещения радиоактивных аэрозолей или паров как стены, так и потолки покрывают масляной краской полностью. Помещения оборудуют хорошей приточно-вытяжной вентиляцией, проводят ежедневную влажную уборку.

Средства индивидуальной защиты. Для защиты человека от внутреннего облучения при попадании радиоизотопов внутрь организма с вдыхаемым воздухом применяют респираторы (для защиты от радиоактивной пыли), противогазы (для защиты от радиоактивных газов).

При работе с радиоактивными изотопами в качестве основной спецодежды применяют халаты, комбинезоны, полукомбинезоны из неокрашенной хлопчатобумажной ткани, а также хлопчатобумажные шапочки.

При опасности значительного загрязнения помещения ра­диоактивными изотопами поверх хлопчатобумажной одежды надевают пленочную (нарукавники, брюки, фартук, халат, костюм), покрывающую все тело или места возможного наибольшего загрязнения. В качестве материалов для пленочной одежды применяются пластики, резину и другие материалы, которые легко очищаются от радиоактивных загрязнений. При использовании пленочной одежды в ее конструкции предусматривается принудительная подача воздуха под костюм и на­рукавники.

При работе с радиоактивными изотопами высокой активности используют перчатки из просвинцованной резины.

При высоких уровнях радиоактивного загрязнения применяют пневмокостюмы из пластических материалов с принудительной подачей чистого воздуха под костюм.

Для защиты глаз применяют очки закрытого типа со стеклами, содержащими фосфат вольфрама или свинец. При работе с альфа- и бета-препаратами для защиты лица и глаз используют защитные щитки из оргстекла.

На ноги надевают пленочные туфли или бахилы и чехлы, снимаемые при выходе из загрязненной зоны.

Методы и средства обеспечения электробезопасности

Поражение человека электрическим током возможно только при замыкании электрической цепи через тело человека. Это может произойти при:

• двухфазном включении в цепь;

• при однофазном включении в цепь – провода, клеммы, шины и т.д.;

• при контакте человека с нетоковедущими частями обору­дования (корпус станка, прибора), конструктивными элементами здания, оказавшимися под напряжением в результате нарушения изоляции проводки и токоведущих частей.

Снизить ток, протекающий через тело человека в этом случае, можно либо за счет увеличения электрического сопротивления цепи (например, за счет применения СИЗ), либо за счет уменьшения потенциала корпуса и увеличения потенциала земли.

Длязашиты от поражения электрическим током применяют­ся следующие технические меры защиты:

· применение малых напряжений;

· электрическое разделение сетей;

· электрическая изоляция;

· защита от опасности при переходе с высшей стороны на низшую;

· контроль и профилактика повреждения изоляции;

· зашита от случайного прикосновения к токоведущим частям;

· защитное заземление, зануление, защитное отключение;

· применение индивидуальных защитных средств.

Применение защитных мероприятий и средств регламентируется «Межотраслевыми правилами по охране труда (технике безопасности) при эксплуатации электроустановок» и зависит от категории помещения по степени электрической опасности.

Применение малых напряжений. Малое напряжение – это на­пряжение не более 42 В, применяемое в целях уменьшения опасности поражения электрическим током. Наибольшая сте­пень безопасности достигается при напряжениях до 10 В. При таком напряжении ток, как правило, не превышает 1...1,5 мА. Однако в помещениях повышенной опасности и особо опасных ток может значительно превысить эту величину, что представляет опасность поражения человека.

На практике применение очень малых напряжений ограничено шахтерскими лампами (2,5 В) и некоторыми бытовыми приборами (карманными фонарями, игрушками и т. п.). На производстве для повышения безопасности применяют напряжения 12 В и 36 В. В помещениях с повышенной опасностью для переносных электрических устройств рекомендуется применять напряжение 36 В. В особо опасных помещениях ручной электроинструмент питается напряжением 36 В, а ручные электролампы – 12 В. Однако в таких помещениях эти напряжения не обеспечивают полной безопасности, а лишь существенно снижа­ют опасность поражения электрическим током.

Источником малого напряжения может быть батарея гальва­нических элементов, аккумулятор, трансформатор. Наиболее часто применяют понижающие трансформаторы, они просты и надежны в работе. Однако при их работе не исключается возможность перехода высокого напряжения первичной обмотки на вторичную обмотку малого напряжения. В этом случае опасность поражения становится равноценной опасности прикосновения к токоведущим частям высокого напряжения. Для уменьшения опасности вторичная обмотка трансформатора заземляется или зануляется. Применение в качестве источника малого напряжения автотрансформатора запрещено, т.к. при этом сеть малого напряжения постоянно электрически связана с сетью высокого напряжения.

Применение малых напряжений 12, 36 и 42 В ограничивается ручным электрофицированным инструментом, ручными переносными лампами и лампами местного освещения в помещениях с повышенной опасностью и особо опасных.

Электрическое разделение сетей. Разветвленная электриче­ская сеть большой протяженности имеет значительную емкость и небольшое сопротивление изоляции фаз относительно земли. В этом случае даже прикосновение к одной фазе является очень опасным. Если единую, сильно разветвленную сеть разделить на ряд небольших сетей такого же напряжения, которые будут обладать небольшой емкостью и высоким сопротивлением изоляции, то опасность поражения резко снижается.

Обычно электрическое разделение сетей осуществляется путем подключения отдельных электроустановок через разделительные трансформаторы. Защитное разделение сетей применяется в электроустановках напряжением до 1000 В, эксплуатация которых связана с повышенной степенью опасности, например в передвижных установках, ручном электрофицированном инструменте и т. п.

Электрическая изоляция — это слой диэлектрика, которым покрывают поверхность токоведущих элементов, или конструк­ция из непроводящего материала, с помощью которой токоведущие элементы отделяют от других частей электроустановки.

В электроустановках применяют следующие виды изоляции:

рабочая изоляция — электрическая изоляция токоведущих частей электроустановки, обеспечивающая ее нормальную работу изащиту от поражения электрическим током;

дополнительная изоляция — электрическая изоляция, пред­усмотренная дополнительно к рабочей изоляции дляза­шиты от поражения электрическим током в случае повре­ждения рабочей изоляции;

двойная изоляция — это изоляция, состоящая из рабочей и дополнительной изоляции;

усиленная изоляция — улучшенная рабочая изоляция, кото­рая обеспечивает такую же степень защиты от поражения электрическим током, как и двойная изоляция.

Контроль и профилактика поврежденной изоляции— важней­ший элемент обеспечения электробезопасности. При вводе в эксплуатацию новых или прошедших ремонт электроустановок проводятся приемо-сдаточные испытания с контролем сопро­тивления изоляции. На работающем оборудовании проводится эксплуатационный контроль изоляции в сроки, установленные нормативами. Контроль сопротивления изоляции осуществляет электротехнический персонал с помощью мегоомметров.

Защита от прикосновения к токоведущим частям установок. Прикосновение к токоведущим частям всегда может быть опас­ным даже в сетях до 1000 В и с хорошей изоляцией фаз. При напряжениях свыше 1000 В опасно даже приближение к токове­дущим частям. В электроустановках напряжением до 1000 В при­менение изолированных проводов уже обеспечивает достаточную защиту от напряжения при прикосновении. Изолированные про­вода, находящиеся под напряжением свыше 1000 В, опасны. Для исключения опасности прикосновения к токоведущим частям не­обходимо обеспечить их недоступность. Это достигается посред­ством ограждения и расположения токоведущих частей на недос­тупной высоте или в недоступном месте.

Ограждения применяют сплошные и сетчатые с размером ячейки сетки 25x25 мм. Сплошные ограждения в виде кожухов и крышек применяют в электроустановках до 1000 В.

Съемные крышки, закрепленные болтами, не обеспечивают надежной защиты, т. к. их часто снимают, теряют. Более надеж­но применение откидывающихся крышек, закрепленных на шарнирах изапирающихся на замок. Сетчатые ограждения при­меняют в установках напряжением доивыше 1000 В. Входные двери ограждений, защитные кожухи могут снабжаться блоки­ровками различного вида.

Защитным заземлением называется преднамеренное электри­ческое соединение с землей металлических нетоковедущих час­тей электроустановок, которые могут оказаться под напряжени­ем.

Принцип действия защитного заземления — уменьшение на­пряжения прикосновения при замыкании на корпус за счет уменьшения потенциала корпуса электроустановки и подъема потенциала основания, на котором стоит человек, до потенциа­ла, близкого по значению к потенциалу заземленной установки.

Заземление может быть эффективным только в том случае, если ток замыкания на землю не увеличивается с уменьшением сопротив­ления заземления. В сетях с глухозаземленнойнейтралью напряжени­ем до 1000 В заземление неэффективно, т. к. ток замыкания на зем­лю зависит от сопротивления заземления и при его уменьшении ток возрастает.

Поэтому защитное заземление применяется в сетях напряже­нием до 1000 В с изолированной нейтралью и в сетях напряжением выше 1000 В как с изолированной, так и с заземленной нейтралью.

Заземляющее устройство — это совокупность заземлителя — металлических проводников, находящихся в непосредственном соприкосновении с землей, и заземляющих проводников, соеди­няющих заземленные части электроустановки с заземлителем. Заземляющие устройства бывают двух типов: выносные, или со­средоточенные, и контурные или распределенные.

Выносное заземляющее устройство характеризуется тем, что заземлитель вынесен за пределы площадки, на которой размещено заземляемое оборудование, или сосредоточен на не­которой части этой площадки. При работе выносного заземле­ния потенциал основания, на котором находится человек, равен или близок к нулю (в зависимости от удаленности человека от заземлителя). Защита человека осуществляется лишь за счет ма­лого электрического сопротивления заземления, т. к. в соответ­ствии с законом Ома больший ток будет протекать по той ветви разветвленной цепи, которая имеет меньшее электрическое со­противление. Такой тип заземляющего устройства обеспечивает в ряде случаев недостаточно высокую степень защиты человека, а лишь уменьшает опасность или тяжесть поражения электриче­ским током. Поэтому его применяют лишь при малых значениях тока замыкания на землю и, в частности, в установках напряже­нием до 1000 В. Достоинством такого типа заземляющего уст­ройства является возможность выбора места размещения зазем­лителя с наименьшим сопротивлением грунта (сырое, глини­стое, в низинах и т. п.).

Контурное заземляющее устройство характеризуется тем, что его одиночные заземлители размещают по контуру (периметру) площадки, на которой находится заземляемое оборудование, или распределяют на всей площадке (зоне обслуживания оборудования) равномерно. Безопасность при контурном заземлении обеспечивается выравниванием потенциала основания и его повышением до значений, близких к потенциалу корпуса оборудования. В результате обеспечивается высокая степень защиты от прикосновения к корпусу оборудования, оказавшегося под напряжением, и от шагового напряжения. Поэтому контурное заземление применяют при высокой степени электроопасности и при напряжениях свыше 1000 В.

Выполнение заземляющих устройств. Различают заземлители искусственные, предназначенные исключительно для целей за­земления, и естественные — находящиеся в земле предметы, ис­пользуемые для других целей.

Для искусственных заземлителей применяют вертикальные либо горизонтальные электроды. В качестве вертикальных элек­тродов применяют обычно стальные трубы диаметром 3...5 см, уголки размером от 40x40 до 60x60 мм длиной 2,5...3,5 м. Для связи вертикальных электродов и в качестве самостоятельного горизонтального электрода используют стальные полосы сечением н


Поделиться с друзьями:

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.085 с.