Абиотические факторы города, как среды обитания. (бил. №5. 12, №6. 10). — КиберПедия 

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Абиотические факторы города, как среды обитания. (бил. №5. 12, №6. 10).

2017-11-18 126
Абиотические факторы города, как среды обитания. (бил. №5. 12, №6. 10). 0.00 из 5.00 0 оценок
Заказать работу

Билет № 11

4. Инвазионная для человека стадия развития возбудителя описторхоза: метацеркарий (после проникновения в рыбу, вокруг формируются 2 оболочки: гиалиновая, образуемая паразитом, и соединительно-тканная, выделяемая хозяином).

5. Где в цитоплазматической мембране располагаются разветвленные полисахариды? В состав плазматической мембраны эукариотических клеток входят также полисахариды. Их короткие, сильно разветвленные молекулы ковалентно связаны с белками (образуя гликопротеиды) или липидами (образуя гликолипиды). Содержание полисахаридов в мембранах составляет 2— 10 % по массе. Полисахаридный слой толщиной 10-20 нм, покрывающий сверху плазмалемму животных клеток, получил название гликокаликс.

6. Некоторые триплеты не кодируют аминокислоты, а являются своеобразными «дорожными знаками», которые определяют начало и конец отдельных генов, поэтому мы можем говорить о полярности генетического кода.

7. Интрон -участок ДНК, который является частью гена, но не содержит информации о последовательности аминокислот белка. Последовательность нуклеотидов, соответствующая интрону, удаляется из транскрибированной с него РНК в процессе сплайсинга до того, как произойдёт считывание белка (трансляция). Интроны характерны для всех типов эукариотической РНК, но также найдены в рРНК и тРНК прокариот. Число и длина интронов очень различны в разных видах и среди разных генов одного организма. Например, геном рыбы фугу содержит мало интронов. С другой стороны, гены млекопитающих и цветковых растений часто содержат многочисленные интроны, которые могут быть длиннее экзонов.

В какой момент жизни человека происходит стадия размножения при оогенезе?

Период размножения: попав в яичник, гоноциты становятся оогониями. Оогонии осуществляют период размножения, делясь митотическим путем. У позвоночных животных (в том числе у человека) этот процесс происходит только в период эмбрионального развития самки, т.е. до рождения.

9. Заражение тениозом: в результате употребления сырой или не подвергшейся достаточной термической обработке свинины, содержащей личинки паразита, а также при употреблении овощей, зелени или других продуктов, зараженными яйцами свиного цепня.

10. ВОЗРАСТНАЯ СТРУКТУРА ПОПУЛЯЦИИ -статический параметр популяции, характеризующий соотношение различных возрастных групп в популяции, определяющий ее способность к размножению. В любой популяции можно выделить 3 экологических возраста: пререпродуктивный (до размножения), репродуктивный (в период размножения), пострепродуктивный (после размножения). Является одной из характеристик демографической структуры популяции.

Строение гена прокариот.

Основной генетический материал прокариот находится в цитоплазме в виде кольцевой молекулы ДНК. Эта молекула (нуклеоид) не окружена ядерной оболочкой, характерной для эукариот, и прикрепляется к плазматической мембране. Таким образом, прокариоты не имеют оформленного ядра. Кроме нуклеоида в прокариотической клетке часто встречается небольшая кольцевая молекула ДНК, называемая плазмидой. Плазмиды могут перемещаться из одной клетки в другую и встраиваться в основную молекулу ДНК.

* лишены ядерной оболочки, а носителем наследственной информации является одна молекула ДНК, упакованная без участия нуклеопротеинов. Поэтому работа генов регулируется через метаболические соединения. Особенностью прокариот является то, что эти организмы способны обмениваться генами непосредственно между собой либо с помощью вирусов-бактериофагов. Одна крупная кольцевая молекула ДНК, заключающая геном прокариот, расположена приблизительно в центральной части клетки.

12. Мутационный процесс как эволюционный фактор. Факторы эволюции – движущая сила, вызывающая и закрепляющая изменения в популяциях как элементарных единицах эволюции. Мутации – это внезапные скачкообразные стойкие изменения в структуре генотипа. Мутационный процесс - это, в основном, спонтанный процесс возникновения мутаций. По своей природе мутационный процесс - статистический процесс. Это значит, что для каждого аллеля определенного гена можно указать лишь вероятность его перехода в какое-то другое состояние. Мутационный процесс - мощный фактор изменения генотипа и генофонда. По своей природе мутации могут быть весьма различны, хотя во всех случаях являются дискретными изменениями общего кода наследственной информации. Различают:

- генные мутации — единицами изменения являются гены или локусы в хромосомах;

- хромосомные мутации — единицами изменения являются структурные перестройки отдельных хромосом (инверсии, дупликации, делеции, транслокации);

- геномные мутации — единицами изменения является число хромосом;

- внеядерные мутации — касаются изменения некоторых константных и более или менее автономных внеядерных структур клетки (митохондрий, пластид и т. п.)

Как сырье для эволюционных изменений малые мутации обладают некоторыми явными преимуществами. Каждая малая мутация вызывает лишь небольшой фенотипический эффект —к лучшему или к худшему. Поэтому аллель, возникший в результате малой мутации и обладающий слабым преимуществом, может включиться в уже существующий генотип, не вызывая какой-либо резкой дисгармонии. При помощи ряда малых мутаций, происходящих в разных локусах, можно создать тот или иной адаптивно количественный эффект, не нарушая функциональной эффективности организма во время промежуточных стадий этого процесса.

Иногда одна-единственная мутация, затрагивающая какую-либо ключевую структуру или функцию, может открыть перед своим обладателем новые возможности. У столь разных организмов, как бактерии и млекопитающие, известны примеры устойчивости к определённым токсинам, обусловленной мутацией по одному гену. Устойчивая мутантная линия получает возможность заселить токсичную среду, закрытую для чувствительного родительского типа. Мутантная бескрылая муха будет обладать преимуществом в открытом для ветров островном местообитании, где нормальная крылатая форма не смогла бы выжить.

Единичная макромутация не обязательно действует одна. Её действие может регулироваться серией генов-модификаторов, каждый из которых сам по себе обладает незначительным эффектом. В таких случаях мы имеем дело с совместным действием макромутаций и малых мутаций в эволюционном процессе.

Прямые данные о типах генных изменений, которые имеют эволюционное значение, получены при генетических исследованиях межрасовых гибридов. Как показывают эти данные, дифференцировку каждой из близких рас обусловливают различные генные системы. Межрасовые различия у растений и животных обычно контролируются системами множественных генов, что подтверждает гипотезу об эволюционном значении малых мутаций. Однако в группах дивергирующих природных популяций наблюдаются также различия по признакам, контролируемым единичными генами, хотя такие случаи довольно редки. Обычно генная система, определяющая различия между расами у высших организмов, состоит из одного главного гена и нескольких генов-модификаторов. Существование подобного рода генной системы позволяет предполагать эволюционное изменение, основанное на видимой мутации, сопровождающейся различными малыми мутациями.

Билет № 12.

4. Первая личиночная стадия возбудителя описторхоза: мирацидия.

См. билет №1.6)

Облегченная диффузия — специальные мембранные белки-переносчики избирательно связываются с тем или иным ионом, или молекулой и переносят их через мембрану.

Активный транспорт. Этот механизм сопряжен с затратами энергии и служит для переноса веществ против их градиента концентрации. Он осуществляется специальными белками-переносчиками, образующими, так называемые, ионные насосы. Наиболее изученным является Nа+/К+-насос в клетках животных, активно выкачивающий ионы Nа наружу, поглощая при этом ионы К+.

В сочетании с активным транспортом ионов в клетку через цитоплазматическую мембрану проникают различные сахара, нуклеотиды, аминокислоты.

Макромолекулы, такие, как белки, нуклеиновые кислоты, полисахариды, липопротеидные комплексы и др. сквозь клеточные мембраны не проходят, в отличие от ионов и мономеров.

6. Стартовым кодоном у эукариотических организмов является триплет AUG в мРНК, кодирующий метионин, с которого начинается образование полипептидной цепи в процессе трансляции.

*из 64 кодонов включения аминокислот в синтезирующуюся полипептидную цепь шифрует 61 триплет, а 3 остальных UAA, UAG, UGA не кодируют включение в белок аминокислот и первоначально были названы бессмысленными, или нонсенкодоном. Однако в дальнейшем было показано, что эти триплеты сигнализируют о завершении трансляции, и поэтому их стали называть терминируюшими, или стоп-кодонами.

**Синтез белка в большинстве случаев начинается с AUG-кодона, кодирующего метионин. Этот кодон обычно называют стартовым или инициаторным. Инициация трансляции предусматривает узнавание рибосомой этого кодона и привлечение инициаторной аминоацил-тРНК.

7. Многие гены состоят из экзонов (кодирующие участки) и интронов (некодирующие участки). При транскрипции с гена считывается РНК, несущая как экзоны, так и интроны. В процессе сплайсинга интроны вырезаются, а экзоны, сшиваясь, образуют зрелую РНК. (см. Бил. №10, 7, №11. 7)  

8. Что происходит с клетками на стадии созревания при оогенезе?

Созревание ооцита — это процесс последовательного прохождения двух делений мейоза. Как уже говорилось выше, при подготовке к первому делению созревания ооцит длительное время находится на стадии профазы I мейоза, когда и происходит его рост. Выход из профазы I мейоза приурочены к достижению самкой половозрелости и определяются половыми гормонами.

Из двух делений созревания первое у большинства видов является редукционным, так как именно в ходе этого деления гомологичные хромосомы расходятся по разным клеткам. Таким образом, каждая из разделившихся клеток приобретает половинный набор хромосом, где каждый ген представлен лишь одной аллелью.

Поскольку первому делению созревания предшествовала S-фаза, каждая из разошедшихся хромосом содержит двойное количество ДНК. Эти генетически идентичные хроматиды и расходятся по сестринским клеткам во втором делении созревания, которое является эквационным. После двух делений созревания число хромосом в каждой из клеток оказывается гаплоидным, а общее количество хроматина в каждом клеточном ядре будет соответствовать 1с.

9. Заражение эхинококкозом: проглатывая яйца, которые попадают на руки с шерсти собак или овец.

10. Половая структура популяции. Численное соотношение полов, т.е. половой состав, и особенно доля размножающихся самок в популяции, имеет большое значение для дальнейшего роста ее численности. Соотношение полов зависит, прежде всего, от биологии вида и сильно различается у моногамных (самец за сезон спаривается с одной самкой) и полигамных животных. Для первых (например, журавли, лебеди) нормой является соотношение полов 1:1. Для вторых (например, морские котики, павианы) типично преобладание самок. Среди моногамных животных почти постоянно имеются «резервные» самцы. Это уже половозрелые, но еще не размножающиеся животные; они представляют собой репродуктивный резерв популяции.

11. Строение оперона. Оперон - группа тесно связанных между собой генов, которые регулируют образование ферментов в организме. В состав оперона входит один или несколько структурных генов, которые определяют природу образующихся ферментов, и ген-оператор, который контролирует деятельность структурных генов и сам, в свою очередь, контролируется регуляторным геном, не входящим в состав оперона.

*Оперон — функциональная единица генома у прокариот, в состав которой входят цистроны (гены, единицы транскрипции), кодирующие совместно или последовательно работающие белки и объединенные под одним (или несколькими) промоторами. Такая функциональная организация позволяет эффективнее регулировать экспрессию (транскрипцию) этих генов. Опероны по количеству цистронов делят на моно-, олиго- и полицистронные, содержащие, соответственно, только один, несколько или много цистронов (генов). Начинается и заканчивается оперон регуляторными областями — промотором в начале и терминатором в конце, кроме этого, каждый отдельный цистрон может иметь в своей структуре собственный промотор и/или терминатор. Все структурные гены, объединенные в оперон, имеют один операторный участок, локализованный на краю оперона, и координированно регулируются одним репрессором. Оперон представляет собой весьма рациональную и эффективную систему регуляции метаболического пути.

12. Популяционные волны, как эволюционный фактор.

Популяционные волны - это колебания численности особей в природных популяциях (это вспышки численности, периодические или непериодические значительные изменения числа особей в популяции). Масштабы колебаний численности у популяций разных видов обычно разные.

Они свойственны всем видам животных, растений и микроорганизмов. Популяционные волны могут быть сезонными (периодическими), генетически обусловленными и несезонными (апериодическими), обусловленными воздействием на популяцию непосредственно различных биотических и абиотических факторов. Так, увеличение кормовых ресурсов - растительности приводит к увеличению численности грызунов (например, леммингов), что, в свою очередь, через некоторое время приводит к увеличению численности хищников (лисиц, песцов). Последнее ведёт к истреблению жертвы (грызунов) и уменьшению кормовых ресурсов для хищников и в конечном итоге к уменьшению численности хищников. В XIX - XX веках отдельные «вспышки» численности организмов отмечались в популяциях кроликов в Австралии, домовых воробьев в Северной Америке, саранчи в Азиатско-Африканском регионе и т.п. После холодной зимы численность кроликов на одном из островов вблизи побережья Англии уменьшилась в 100 раз. Поэтому волны жизни опасны для выживания малочисленных популяций. Эволюционное значение популяционных волн сводится к случайным изменениям концентрации и частоты различных аллелей и генотипов, содержащихся в популяции. Изменение генофонда популяции происходит:

а) на подъёме популяционной волны (при возрастании численности популяции, усиливающиеся межпопуляционные масти зайцев и хищников) приводят к изменению генофонда популяции; б) на гребне популяционной волны (при наибольшей численности популяции): с возрастанием конкуренции возможно выселение особей за пределы ареала вида, где они испытывают действие новых (нетипичных) условий, которые могут существенно повлиять на частоту определённых аллелей.

*Важной причиной популяционных волн является также постепенное истощение пищевых ресурсов в связи с ростом популяции и последующее их восстановление после снижения численности популяции. Причинами резких непериодических снижений численности популяции могут также быть стихийные бедствия: засухи, пожары, наводнения. Каким бы ни был механизм популяционных волн, ясно, что на численность популяции могут влиять одновременно многие факторы. Популяционные волны играют большую роль в ходе микроэволюции. С возрастанием численности популяции увеличивается вероятность появления новых мутаций и их комбинаций. Если в среднем один мутант появляется на 10 тыс. особей, то при возрастании численности популяции в 100 раз общее число мутантов увеличится во столько же раз. После спада волны численности генофонд популяции может уже оказаться иным: часть мутаций может случайно исчезнуть из-за гибели несущих их особей, а частота встречаемости других мутаций может повыситься. Таким образом, популяционные волны сами по себе не вызывают наследственную изменчивость, а только способствуют изменению частот аллелей и генотипов; они являются поставщиком исходного материала для действия естественного отбора.

Билет № 13.

4. Промежуточный хозяин возбудителя тениаринхоза: крупный рогатый скот.

5. Примеры облегченной диффузии (см. билет №1.6, 5.5).

6. В генетическом коде 3 триплета не кодируют аминокислоты. Какова их функция?

(см. бил. №6. 6, №11. 6, №12. 6).

Из 64 кодонов у бактерий и фагов 3 кодона — УАА, УАГ и УГА — не кодируют аминокислот; они служат сигналом к освобождению полипептидной цепи с Рибосомы, т. е. сигнализируют о завершении синтеза полипептида. Их называют терминирующими кодонами.

* Поскольку существует 4 различных нуклеотида, то общее число кодонов равняется 64, из которых 61 кодируют определённые аминокислоты, а 3 оставшихся кодона (UGA, UAG и UAA) сигнализируют об остановке трансляции полипептидной цепи и называются стоп-кодонами. Кодон UAG в мРНК носит ещё название амбер-кодон, UGA — опал, а UAA — охра. Стоп-кодоны выполняют важную функцию завершения (терминацию) сборки полипептидной цепи и также называются терминаторными кодонами. Некоторые из них вызывают обязательное прекращение синтеза, другие являются условными. Кроме того, стоп-кодон, как кодон при котором не происходит включения аминокислоты в белок, ещё называют бессмысленным кодоном или нонсенс-кодоном.

7. Сплайсинг – вырезание различных по длине внутренних участков (интронов) и сшивание оставшихся, несущих смысловую нагрузку для кодируемого белка - экзонов. В результате удаления каждого интрона происходит разрыв двух фосфодиэфирных связей с последующим образованием одной новой.

* Удаление последовательностей интронов с помощью сплайсинга происходит в ядрах эукариот сразу после завершения синтеза пре-РНК. В сплайсинге участвуют рибонуклеопротеиновые (РНП)-частицы - малые ядерные РНП (мяРНП), в состав которых входят мяРНК U1-U6 и многочисленные белки. РНП-частицы на стыках интронов и экзонов образуют функциональный комплекс, получивший название сплайсомы. Интроны предшественников тРНК у эукариот удаляются с участием более простого набора ферментов, а для вырезания некоторых интронов не требуется никаких дополнительных компонентов, кроме самих предшественников РНК. Последний процесс получил название аутосплайсинга.

8.В какой период жизни человека в нем происходит стадия размножения при сперматогенезе? Сперматогенез - образование мужских половых клеток (сперматозоидов) - происходит в стенках извитых канальцев семенника. Этот процесс условно делят на четыре периода. 1-й период - размножение. Наружный слой клеток семенных канальцев имеет диплоидный набор хромосом. Эти клетки делятся митозом. Их число увеличивается. Образовавшиеся клетки называют сперматогониями. Они имеют округлую форму и крупное ядро. 2-й период - период роста. Сперматогонии перемещаются в зону роста, расположенную ближе к просвету канальца. Клетки увеличиваются в размерах и их называют сперматоцитами I порядка. 3-й период - созревание. В этом периоде происходит два мейотических деления. Каждый сперматоцит I порядка в результате первого мейотического деления образует два сперматоцита II порядка с гаплоидным набором хромосом. После второго мейотического деления из сперматоцитов I порядка образуются по две сперматиды, представляющие собой овальные клетки небольших размеров. В 4-м периоде формирования сперматиды перемещаются ближе к просвету канальца. Из сперматид формируются сперматозоиды, имеющие определенное строение. Хвосты сперматозоидов направлены в просвет канальца. Таким образом, из одного сперматогония формируется четыре сперматозоида. Сперматогенез у человека в норме начинается в пубертатном периоде (около 12 лет) и продолжается до глубокой старости. Продолжительность полного сперматогенеза у мужчин составляет примерно 73—75 дней. Один цикл зародышевого эпителия составляет приблизительно 16 дней. Сперматогенез у мужчин начинается только после полового созревания и затем непрерывно продолжается в эпителиальной выстилке очень длинных, сильно извитых трубочек, называемых семенными канальцами, которые находятся в семенниках. Незрелые половые клетки - сперматогонии - располагаются на самой периферии канальца, у базальной мембраны, где они все время делятся путем митоза. Некоторые из дочерних клеток перестают делиться и дифференцируются в сперматоциты первого порядка. Эти клетки вступают, как уже говорилось выше, в I профазу мейоза, в которой происходит кроссинговер между их спаренными гомологичными хромосомами, а затем заканчивают первое деление, образуя по два сперматоцита второго порядка; у человека каждый из них содержит по 22 дуплицированные аутосомы и одну дуплицированную хромосому X или Y. Каждая хромосома по-прежнему состоит из двух сестринских хроматид, и когда оба сперматоцита второго порядка претерпевают второе деление мейоза, образуются четыре сперматиды с гаплоидным числом одиночных хромосом. Затем такие гаплоидные сперматиды в результате морфологической дифференцировки превращаются в зрелые спермии, которые выходят в просвет семенного канальца, а позднее - в придаток семенника, представляющий собой извитую трубочку, охватывающую семенник; здесь спермии накапливаются и здесь же продолжается их созревание.

9. Заражение геминолепидозом: Гименолепидоз поражает преимущественно городское население. Чаще болеют дети 4-14 лет, что объясняется недостаточным воспитанием у них гигиенических навыков, а также особенностями возрастного иммунитета. Очаги гименолепидоза формируются в детских дошкольных учреждениях, школах, интернатах, детских домах, микрооча в семьях. Уровень пораженности зависит от санитарно-гигиенических условий, скученности, социальных трудностей. Установлено, что эти очаги и микроочаги возникают и превращаю «упорные» там, где имеются инвазированные острицами. Это объясняется тем, что яйца карликового цепня при расчесах перианальной области (зуд) загрязняют пальцы рук, это способствует аутоинвазии, а также заражению окружающих.

10. Пространственная структура популяции (ПСП). Каждая популяция занимает пространство, обеспечивающее условия жизни для ограниченного числа особей. При изучении пространственной структуры различают случайное (в природе встречается редко; оно наблюдается в случаях, когда среда очень однородна, а организмы не стремятся объединиться в группы), равномерное(между особями очень сильна конкуренция или существует антагонизм) и неравномерное (групповое; наблюдается часто) распределения особей на территории (в пространстве). ПСП очень динамична. Она подвержена сезонным и другим адаптивным перестройкам. Однако масштабы возможных изменений и тип использования территории определяются биологическими особенностями вида.

11. Строение гена эукариот.(см. бил. №6. 6, №11. 6, №12. 6, №13. 6). На схеме показаны экзоны, или кодирующие последовательности (прямоугольники), разделенные промежуточными последовательностями, или интронами. Интроны начинаются с динуклеотида ГТ и заканчиваются динуклеотидом АГ. Короткая последовательность ААТАА - сигнал для эндонуклеазного расщепления и полиаденилирования вновь синтезированной РНК. Перед геном расположено несколько элементов промотора (обозначенные пустыми скобками). Обычно элементы промотора содержат последовательности ТАТА, ЦЦААТ и ГГЦГГГ. Усиливающие транскрипцию последовательности, так называемые энхансеры, могут быть расположены перед геном, внутри или позади него. После транскрипции РНК подвергается процессингу, в результате которого образуется зрелая мРНК, которая служит матрицей для синтеза белка. Стоп - терминирующий кодон.

12. Борьба за существование - один из движущих факторов эволюции, наряду с естественным отбором и наследственной изменчивостью, совокупность многообразных и сложных взаимоотношений, существующих между организмами и условиями среды. Классификация:

Внутривидовая борьба — которая протекает наиболее остро, так как у всех особей вида совпадает экологическая ниша. В ходе внутривидовой борьбы организмы конкурируют за ограниченные ресурсы — пищевые, территориальные, самцы некоторых животных конкурируют между собой за оплодотворение самки, а также другие ресурсы. Для снижения остроты внутривидовой борьбы организмы вырабатывают различные приспособления — разграничение индивидуальных участков, сложные иерархические отношения. У многих видов организмы на разных этапах развития занимают разные экологические ниши, например, личинки жесткокрылых обитают в почве, а стрекоз — в воде, в то время как взрослые особи заселяют наземно-воздушную среду. Внутривидовая борьба приводит к гибели менее приспособленных особей, способствуя таким образом естественному отбору.

Межвидовая борьба — борьба за существование между разными видами. Как правило, межвидовая борьба протекает особенно остро, если у видов сильно перекрываются экологические ниши (часто у представителей одного рода или семейства). В ходе межвидовой борьбы организмы также конкурируют за одни и те же ресурсы — пищевые, территориальные. Межвидовая борьба за существование включает в себя отношения типа хищник — жертва, паразит — хозяин, растение — травоядное животное. Межвидовая борьба за существование во многих случаях стимулирует эволюционные изменения у видов, см. статью Гипотеза Красной королевы. Другим примером борьбы за существование являются взаимно полезное влияние одного вида на другой или другие (например, мутуалистические отношения, комменсализм), подобным образом животные опыляют растения и переносят семена, питаясь нектаром, пыльцой и плодами. Часто межвидовая борьба за существование приводит к появлению приспособлений, как, например, в случае коэволюции цветковых растений и насекомых-опылителей. Обычно межвидовая борьба за существование усиливает и обостряет внутривидовую борьбу.

Борьба с неблагоприятными условиями окружающей среды — также усиливает внутривидовую борьбу-состязание, так как, кроме борьбы между особями одного вида, появляется также конкуренция за факторы неживой природы — например, минеральные вещества, свет и другие. Наследственная изменчивость, повышающая приспособленность вида к факторам окружающей среды, приводит к биологическому прогрессу.

Билет № 14.

4. Первый промежуточный хозяин возбудителя парагонимоза: пресноводные моллюски рода Melania.

5. Из каких структур образована центриоль? Центриоли представляют собой цилиндрические белковые структуры, расположенные вблизи ядра клеток животных (у растений центриолей нет). Центриоль представляет собой цилиндр, боковая поверхность которого образована девятью наборами микротрубочек. Количество микротрубочек в наборе может колебаться для разных организмов от 1 до 3.

Вокруг центриолей находится центр организации цитоскелета, район в котором группируются минус концы микротрубочек клетки.

6. Почему каждая тРНК переносит в рибосому всего одну и ту же строго определенную аминокислоту? Транспортные РНК составляют около 15% от общего количества клеточных РНК. Нуклеотидная цепь тРНК содержит всего 75—90 нуклеотидов, для большинства тРНК установлена полная последовательность нуклеотидов в цепи. Особенностью тРНК является относительно высокое содержание нуклеотидов, включающих минорные азотистые основания. Эти Н. к. с помощью высокоспецифичных ферментов аминоацил-тРНК-синтетаз присоединяют к себе ту или иную аминокислоту и переносят ее на рибосому. Для одной и той же аминокислоты имеется несколько тРНК, которые называют изоакцепторными. Транспортная РНК в ходе синтеза полипептидной цепи белка «узнает» специфическую аминоацил-тРНК-синтетазу, принимает от нее активированную аминокислоту, присоединяется к иРНК на рибосоме и тем самым обеспечивает строгую специфичность выбора и встраивания аминокислот в растущую молекулу белка; после образования пептидной связи между доставленной аминокислотой и уже построенной полипептидной цепью тРНК удерживает эту цепь на рибосоме.

7. (билет №13. 7). Альтернативный сплайсинг. При этом интроны в составе пре-мРНК вырезаются в разных альтернативных комбинациях, при которых вырезаются и некоторые экзоны. Разные варианты альтернативного сплайсинга одной пре-мРНК могут осуществляться в разные периоды развития организма или в разных тканях, а также у разных особей одного вида.

Сущность альтернативного сплайсинга заключается в том, что в результате посттранскрипционного процессинга предшественника мРНК, из которого в результате сплайсинга вырезаются некодирующие последовательности нуклеотидов, соответствующие интронам транскрибированного гена, образуются зрелые мРНК, различающиеся по своей первичной структуре. В результате в разных клетках из одного и того же предшественника получаются молекулы зрелых мРНК, которые объединяют в различных комбинациях последовательности экзонов транскрибированного гена.

Таким образом, альтернативный сплайсинг позволяет увеличить разнообразие белковых продуктов генов, не увеличивая пропорционально этому размер генома, в том числе не создавая дополнительных копий генов. Биологический смысл альтернативного сплайсинга для многоклеточных эукариот состоит в том, что он, по-видимому, является ключевым механизмом увеличения разнообразия белков, а также позволяет осуществлять сложную систему регуляции экспрессии генов, в том числе тканеспецифической


Поделиться с друзьями:

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.053 с.