Циклы АЭС и их эффективность — КиберПедия 

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Циклы АЭС и их эффективность

2017-10-11 249
Циклы АЭС и их эффективность 0.00 из 5.00 0 оценок
Заказать работу

Как уже отмечалось, на АЭС ядерный тепловой двигатель состоит из реактора, являющегося источником теплоты (подобно паровому котлу или камере сгорания), и соответственно паро или газотурбинной установки, где эта теплота превращается в механическую работу. Поэтому теоретические циклы ядерных тепловых двигателей подобны рассмотренным выше циклам паротурбинных и газотурбинных двигателей и к ним применимы те же оценочные критерии. Однако существуют и некоторые особенности:

1) возможность широко изменять тепловую мощность реактора;

2)ограниченность ее максимальной величины термостойкостью оболочек твэлов (сплавы из А1 и Mg — до 450 °С, нержавеющая сталь — до 600о С, другие материалы — до 1000 °С) и термостойкостью ядерного топлива (металлический уран — до 600 °С, двуокись урана UО2 — 2760 °С);

3)небольшая доля топливной составляющей в балансе стоимости вырабатываемой энергии (10—15% против 50—60% на ТЭС), которая при воспроизводстве ядерного топлива становится совсем ничтожной;

4)последнее обстоятельство предъявляет к АЭС не только требование высокого термического КПД цикла но и максимальной единичной мощности, позволяющей снизить капиталовложения в строительство электростанций и энергосиловых установок судов.

В зависимости от допускаемой предельной температуры различают так называемые низкотемпературные и высокотемпературные реакторы.

Последние позволяют повысить давление и температуру пара в цикле АЭС. Они обеспечивают наибольшую эффективность при более простой схеме станции и рассчитаны на применение воды в качестве теплоносителя.

Одним из путей повышения параметров пара АЭС является использование газовых ( воздуха, гелия, аргона) и жидкометаллических (натрия, сплава натрия с калием) теплоносителей в реакторе, позволяющих достигнуть высоких параметров пара непосредственно во вторичном контуре двухконтурной АЭС.

Электрическая мощность атомной установки определяется из выражения

где — относительный внутренний КПД турбины; —механический КПД; — КПД электрического генератора; — КПД оборудования собственных нужд установки.

В настоящее время наиболее широко применяются паротурбинные ядерные установки, реже — газотурбинные. Для повышения эффективности в них используются все рассмотренные выше усовершенствования (способы): регенерация теплоты, промежуточный перегрев пара, парогазовые и бинарные циклы и т.д.

Основное назначение ядерных установок — выработка электроэнергии на электростанциях, но они устанавливаются также на крупных судах и на подводных лодках.

В России применяют и строят главным образом паротурбинные установки.

Глава 3 ГИДРОЭЛЕКТРИЧЕСКИЕ СТАНЦИИ

ОБЩИЕ ПОЛОЖЕНИЯ

Гидроэлектрические станции — это высокоэффективные источники электроэнергии. В большинстве случаев гидроэлектростанции представляют собой объекты комплексного назначения, обеспечивающие нужды электроэнергетики и других отраслей народного хозяйства: мелиорации земель, водного транспорта, водоснабжения, рыбного хозяйства и пр.

Гидроэлектрическая станция — это комплекс сооружений и оборудования, посредством которых энергия водотока преобразуется в электрическую энергию. ГЭС состоит из гидротехнических сооружений, обеспечивающих необходимую концентрацию потока воды и создание сосредоточенного напора, и энергетического оборудования, преобразующего энергию движущейся под напором воды в электрическую энергию.

По напору ГЭС делятся на высоконапорные (более 80 м), средненапорные (от 25 до 80 м) и низконапорные (до 25 м).

Принято называть совокупность гидротехнических сооружений, энергетическое и механическое оборудование гидроэнергетической установкой (ГЭУ).

Различают следующие основные типы гидроэнергетических установок:

гидроэлектростанции (ГЭС);

насосные станции (НС);

гидроаккумулирующие электростанции (ГАЭС);

приливные электростанции (ПЭС).

Как уже отмечалось, ГЭС — это предприятие, на котором гидравлическая энергия водотока преобразуется в электрическую.

Основными сооружениями ГЭС на равнинной реке являются плотина, создающая водохранилище и сосредоточенный перепад уровней, т.е. напор, и здание ГЭС, в котором размешаются гидравлические турбины, генераторы, электрическое и механическое оборудование. В случае необходимости строятся водосбросные и судоходные сооружения, рыбопропускные сооружения и т.п. Общий вид ГЭС приплотинного типа представлен на рис. 3:1 Вода под действием силы тяжести по водоводам движется из верхнего бьефа в нижний, вращая рабочее колесо турбины. Гидравлическая турбина соединена валом с ротором электрического генератора. Турбина и генератор вместе образуют гидрогенератор. В турбине гидравлическая энергия преобразуется в механическую энергию вращения на валу агрегата, а генератор преобразует эту энергию в электрическую. Возможно создание на реках каскадов ГЭС. В России построены и успешно эксплуатируются Волжский, Камский, Ангарский, Енисейский и другие каскады ГЭС.

Рис. 3.1. Общий вид ГЭС приплотинного типа

Гидроэлектростанции как источник электрической энергии имеют существенные преимущества перед тепловыми и атомными электростанциями. Они лучше приспособлены для автоматизации и требуют меньшего количества эксплуатационного персонала. Показательны следующие средние значения удельной численности персонала станций различного вида на 1 млн кВт

установленной мощности: для ГЭС — 300, для ТЭС — 1400, для АЭС — 1800 чел. Но это только на самой станции, а еще нужно добавить трудозатраты на добычу и транспортировку топлива, в итоге требуемая удельная численность персонала на 1 млн кВт для ТЭС (АЭС) в среднем составляет 2500 чел.

В России построены и эксплуатируются крупные ГЭС: каскад Волжских ГЭС, каждая мощностью 2530 МВт и менее; Братская ГЭС - 4500 МВт, Красноярская ГЭС - 6000 МВт, Саяно-Шушенская ГЭС — 6400 МВт и много других.

Малые ГЭС. В настоящее время в мире и России большой интерес вызывает возможность создания малых ГЭС (мощностью до 30 МВт). Они могут создаваться в короткие сроки с использованием унифицированных гидроагрегатов и строительных конструкций с высоким уровнем автоматизации систем управления. Экономическая эффективность их использования существенно возрастает при комплексном использовании малых водохранилищ (восстановления объема водохранилища, рыбоводство, водозаборы для систем орошения и водоснабжения и т.п.).

Насосная станция предназначена для перекачки воды с низких отметок на высокие и транспортировки воды в удаленные пункты.

На насосной станции устанавливаются насосные агрегаты, состоящие из насоса и двигателя. Насосная станция является потребителем электроэнергии.

Они используются для водоснабжения тепловых и атомных станций, коммунально-бытового и промышленного водоснабжения, в ирригационных системах, судоходных каналах и т.п.

Гидроаккумулирующая электростанция предназначена для перераспределения во времени энергии и мощности в энергосистеме. В часы пониженных нагрузок ГАЭС работает как насосная станция. За счет потребляемой энергии станция перекачивает воду из нижнего бьефа в верхний и создает запасы гидроэнергии за счет повышения уровня верхнего бьефа.

В часы максимальной нагрузки ГАЭС работает как гидроэлектростанция. Вода из верхнего бьефа пропускается через турбины в нижний бьеф, и ГАЭС вырабатывает и выдает электроэнергию в энергосистему. В процессе работы ГАЭС потребляет дешевую электроэнергию, а выдает более дорогую в период пика нагрузки (за счет разности тарифов).

В настоящее время в России работает Загорская ГАЭС мощностью 1200 МВт, ведется проектирование других ГАЭС.

Работа ГАЭС показана на рис.3.2, схема V.

Приливные электростанции сооружаются на побережье морей и океанов со значительными приливно-отливными колебаниями уровня воды. Для этого естественный залив отделяется от моря плотиной и зданием ПЭС. При приливе уровень моря будет выше уровня воды в отделенном от него заливе, а при отливе, наоборот, ниже уровня воды в заливе (см. рис.3.2, схема IV). Перепады этих уровней создают напор, который используется при работе гидротурбин ПЭС.

Рис.3.2. Принципиальные схемы создания напора

В некоторых морских заливах приливы достигают 10—12 м, а наибольшие приливы наблюдаются в заливе Фанди (Канада) и достигают 19,6 м.

Технические ресурсы приливной энергии России оцениваются в 200—250 млрд кВт • ч в год и в основном сосредоточены у побережья Охотского, Берингова и Белого морей.

 

ЭНЕРГИЯ РЕЧНОГО ВОДОТОКА

Работа гидравлических станций в значительной мере основывается на законах науки, называемой гидравликой; она включает в себя гидростатику, изучающую равновесие жидкостей, и гидродинамику, изучающую движение жидкостей.

Известно, что вода покрывает почти три четверти нашей планеты. Значительное количество воды испаряется и выпадает в виде осадков на поверхность Земли, в том числе и на отдельные участки суши, расположенные над уровнем океана. Спускаясь с возвышенных участков на более низкие в виде больших и малых водотоков, эти постоянно возобновляемые природой массы воды теряют энергию, которая может быть эффективно использована. В естественном состоянии эта энергия расходуется на преодоление сил трения при взаимодействии потока с руслом, на перемещение наносов, преодоление препятствий в руслах (пороги, перекаты и др.).

Территория, с которой стекает вода в реку, называется водосборным бассейном данной реки. Линия, проходящая по повышенным местам и отделяющая друг от друга соседние бассейны, называется водораздельной линией.

К водосборному бассейну моря относят водосборные бассейны всех рек, впадающих в данное море.

Количество воды, протекающей через поперечное сечение водотока в 1 с, называется расходом воды Q3/с или л/с).

Хронологический график изменения расходов воды во времени называется гидрографом. Его строят по результатам регулярных измерений расходов воды в реке.

Суммарный объем воды, прошедший через поперечное сечение водотока от какого-либо начального момента времени t0 до некоторого конечного называется стоком W.

Величина стока реки за сутки, месяц или любой другой промежуток времени, в течение которого расход воды Q, м3/с, сохраняет постоянное значение, равна W= Q t, где t — число секунд в данном промежутке времени.

При различном расходе воды в течение всего рассматриваемого интервала времени от до tK(по гидрографу) объем стока определяется по формуле

Отметим, что среднегодовой сток всех рек мира составляет
32 тыс. км3; в табл. 3.1 приведены данные о речном стоке отдель-
ных стран мира.

Таблица3.1


Поделиться с друзьями:

Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.