Геологическая характеристика пещер — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Геологическая характеристика пещер

2017-10-09 100
Геологическая характеристика пещер 0.00 из 5.00 0 оценок
Заказать работу

Не будучи специалистом-геологом, спелеотурист, естественно, не в состоянии выполнить весь необходимый объем геологических и гидрогеологических наблюдений под землей. Однако знакомство с основами этих научных дисциплин необходимо для правильной организации и проведения поиска карстовых полостей, их исследования и, в особенности, для безаварийной работы под землей. Кроме того, маршрутные описания - это первый этап комплексного изучения любой пещеры. Поэтому спелеотурист должен владеть некоторыми приемами и методами простейших геологосъемочных работ.

Геологические наблюдения нужно проводить как на подходах к пещере в ее ближайших окрестностях, так и под землей.

Наблюдения на поверхности. Основная задача - охарактеризовать геологические особенности вмещающих, подстилающих и перекрывающих отложении.

20. Литология. Спелеотуристу в этом разделе следует описать в простейшей форме химический состав пород: карбонатные (известняк, доломит), сульфатные (гипс, ангидрит), галогенные (каменная соль), конгломераты и реже брекчии. Особенности этих пород подробно изложены в многочисленных практических руководствах по геологии, петрографии и минералогии [6-8].

21. Цвет породы. При описаниях важно отмечать оттенок (темность) породы, степень интенсивности или насыщенности цвета, цветовые тона пород: в полевых условиях также следует выяснить минералогическую и химическую природу цвета: относится ли окраска к глинистым водопроницаемым или к пористым породам, как изменяется окраска у трещин, в середине обломков и т. д. Например, на массиве Алек появление на фоне равномерной светло-серой окраски известняков обломков пород с зеленой окраской свидетельствует, о приближении к крупной зоне разлома со смещением (сброс).

22. Слоистость. Спелеотуристам необходимо знать и уметь выделять по характеру слоистости пять разновидностей известняков:

неслоистые (видимая слоистость отсутствует, хотя в 5-10 м по разрезу прослеживаются отдельные трещины напластования);

толстослоистые (мощность слоя более 0,5 м);

среднеплитовые (0,3-0,5 м);

тонкоплитчатые (0,1-0,3м);

листоватые (менее 0,1 м, см. рис. 6).

Из каждого слоя, отличавшегося по цвету, составу или толщине, необходимо при помощи геологического или скального молотка взять образец размерами 6х10 см и снабдить его этикеткой. В этикетке обозначаются: номер образца (порядковый в экспедиции данного года, например, 1977 - 1, 2, 3 и т. д.); название экспедиции (лагеря), отряда (отделения); район работ (массив Алек); точка наблюдений (балка шахты Заблудших, 20 м выше входа по правому борту); слой (прослой кремниевых песчаников в толще известняков); полевое определение (песчаник мелкозернистый, кремнистый); подпись спелеотуриста, отобравшего образец; дата.

Образцы обычно отбивают от коренного выхода породы, предварительно расчистив его (убрав выветренную породу). Поэтому при послойном отборе проб лучше делать это снизу вверх по склону. Этим мы гарантируем себя от "засорения" обнажения материалом вышележащих слоев.

По весу образцы могут быть разными - для изготовления шлифов достаточно 0,1 кг породы (размер образца 2х3 см), для определения гранулометрического состава на ситах для мелкозернистых пород - 0,2 кг; для гравелитов - до 2 кг; для определения объемного веса - 0,2-0,3 кг; карбонатности и термического анализа - до 0,1 кг; силикатного химического анализа - 0,2-0,3 кг; химического и минералогического анализа - до 1,0 кг; спектрального анализа - до 50 г и т. д. Так как спелеотуристу обычно неизвестно, на какие анализы предназначены образцы отобранных им пород, их вес должен быть не менее 0,5 кг.

На образец наклеивается этикетка из лейкопластыря, где указывается только номер. Твердые образцы вместе с этикеткой упаковываются в бумагу. Для этого берут лист оберточной бумаги размером 30х40 см, в один угол заворачивают сложенную этикетку, затем этот угол прижимают к образцу. Рыхлые породы с этикеткой упаковывают в мешочек, на котором также указывают номер. Хрупкие образцы (палеонтологические находки, кристаллы, натечные формы) лучше укладывать в коробочки или банки. Чтобы предохранить образцы от намокания, их лучше складывать по 10-20 шт. в водонепроницаемый мешок из полиэтилена, а уже потом - в транспортный мешок.

23. Возраст породы. Во всех случаях, когда спелеотуриста интересует возраст пород, следует взять образцы пород и передать их специалистам.

24. Элементы залегания пород. Горные породы могут залегать горизонтально (в этом случае измерять элементы их залегания нет необходимости) или наклонно. Пространственное положение наклонно залегающей пачки пород (а также - любого тектонического нарушения - трещины, разлома) характеризуется тремя параметрами: азимутом простирания, азимутом падения и углом падения.

Линия простирания - это линия пересечения поверхности слоя с горизонтальной плоскостью, то есть любая горизонтальная линия на наклонной поверхности (рис. 1, 5). Азимутом линии простирания называется угол между ее направлением и северным меридианом. Понятно, что в зависимости от положения съемщика для линии простирания можно получить два значения, отличающиеся на 180°. Поэтому лучше записывать оба значения (простирание пласта 35-215°).

Линия падения (рис. 1, 6) располагается в плоскости пласта, перпендикулярна к линии простирания и направлена в сторону падения пласта (трещины). Эта линия имеет наибольший угол наклона к горизонту по отношению к любой другой линии, которую можно провести по поверхности пласта. Азимут падения - это азимут между северным меридианом и проекцией линии падения на горизонтальную плоскость, а угол падения - угол между линией падения и ее проекцией на горизонтальную плоскость. Угол падения может меняться от 0° (горизонтальное залегание) до 90° (пласты поставлены "на голову"). Азимут падения может принимать любое значение от 0° до 360°, причем азимут простирания равен азимуту падения +/-90°.

В полевых условиях на определяемой плоскости прежде всего нужно найти линию падения, ее указывает струйка воды, текущая по обнажению, катящаяся галька и т. д. Приложив к этой линии горный компас, по клинометру определяют угол падения (см. рис. 1). Затем определяют азимут падения. Для этого горный компас кладут на поверхность пласта так, чтобы его длинная сторона совпала с линией падения, а север лимба был ориентирован в сторону его падения, приподнимают опущенный край компаса до горизонтального положения и производят отсчет по северному концу стрелки (рис. 1). Начинающим спелеотуристам полезно после этого определить угол падения линии простирания (он по определению должен быть равен нулю, рис. 1) и азимут простирания пласта (рис. 1).

Иногда не удается расчистить хорошую площадку для замера азимута падения, но зато можно замерить генеральное простирание пластов. В этом случае работу начинают с определения азимута простирания, а азимут падения определяют приближенно, уточняя его перерасчетом (азимут простирания +/-90°).

При некотором навыке элементы залегания пластов можно определять и на расстоянии, держа компас в вытянутой руке и визируя его длинной стороной па пласт.

Запись замеров следует делать по форме: (угол падения 30°, азимут 235°). На чертежах элементы залегания (рис. 6) проставляются у плана, имеющего ориентировку по отношению к линии север-юг (рис. 10), или у планов-срезов (рис. 12, 13). Эти данные необходимы для нанесения на разрезы геологической ситуации.

Определение элементов залегания пластов - необходимая составная часть анализа геологической ситуации у пещеры. Замерив элементы залегания горных пород на склонах речной долины и на водоразделе (на склоне горного массива и на плато), можно сделать заключение о структурном плане района, что важно при подготовке пещер к их оборудованию.
Горизонтальное (субгоризонтальное) залегание пород характерно для платформенных областей страны. Элементы залегания на большом протяжении не меняются, составляя 1-2°. Более древние породы залегают под более молодыми, обнажаясь только в днищах речных долин. Карстовые полости располагаются под водоразделами. Входы в них расположены на склонах долин и в карстовых (карстово-суффозионных) или провальных воронках на междуречьях (рис. 18), пример: пещеры Подолии.

Наклонное (моноклинальное) залегание пород обычно встречается в предгорьях. Более устойчивые к размыву породы образуют куэстовые уступы. Ниже склон выполаживается. Входы в пещеры часто располагаются в бортах продольных долин, заложенных вдоль простирания пород, либо в бортах поперечных долин, разрезающих куэсты в плоскости чертежа (рис. 18, б, пример: Предгорный Крым, Северный Кавказ).

В горных районах породы неоднократно подвергались сжатию. Поэтому они смяты в антиклинальные и синклинальные складки, которые могут полностью сохраниться в рельефе (рис. 18, в) или бывают срезаны на разных уровнях процессами денудации (рис. 18, в, пунктир). На разных склонах горного массива породы могут иметь залегание в противоположные стороны (хребет Ахцу на Западном Кавказе). Иногда складчатость развивалась настолько интенсивно, что вместо антиклинальной образуется брахиантиклинальная структура, в пределах которой можно встретить падения пород во все стороны ("моделью" брахиантиклинальной структуры с плоским сводом может служить перевернутая тарелка). Строение брахиантиклинали еще более сложно: ее северное и южное, западное и восточное погружения имеют разные углы наклона, иногда приближающиеся к 80-90° (рис. 18, г). Полости, заложенные в этих условиях, имеют очень сложную морфологию, извилисты, часто образуют ложные этажи.

Рассмотренные ситуации не исчерпывают многообразия условии заложения карстовых пещер. Выявить их па основании геологической съемки - это одна из задач, которую должны решить спелеотуристы при исследовании района.

25. Тектоническая трещиноватость. Трещины (разрывы без смещения) играют большую роль в формировании как самих карстовых форм, так и их водных хемогенных отложений Ориентировка плоскостей тектонических трещин по отношению к залеганию пластов горных пород может быть разной (рис 1) Главные направления тектонических трещин района по которым происходит формирование большинства карстовых полостей, удается выяснить, произведя несколько сотен замеров трещин на поверхности и под землей.

Замеры элементов залегания тектонических трещин производятся горным компасом аналогично замеру элементов залегания горных пород. Для вертикальных трещин необходимо получить азимут их простирания, для наклонных - азимут простирания и угол падения. При замерах трещин необходимо обращать внимание на величину их раскрытия (зияния) и наличие заполнителя (глины, кристаллов, кальцита и других минералов, натеков и др.). Затем нужно провести статистическую обработку материалов, построить таблицу распределения трещин по направлениям и график трещиноватости района (рис. 19). Его анализируют совместно с материалами о направлениях заложения карстовых полостей. Последовательность операций при этом следующая. Определяется количество трещин, попадающих в десятиградусный интервал*** (подсчет ведется в северо-восточном и северо-западных румбах, а азимуты трещин юго-западного и юго-восточного румбов пересчитываются на обратные). Например, азимут 125° соответствует 125+180=305°; азимут 197° соответствует 197-180=17° и т. д. Количество замеров в интервале суммируется, определяется общее число замеров и эта сумма принимается за 100% (табл.3).

Параллельно с обработкой материалов по тектонической трещиноватости производится обработка топографических материалов, определяются протяженность и генеральное простирание (по оси хода) всех галерей заснятой пещеры. Эти данные также группируются по интервалам и пересчитываются в проценты (табл. 3) с целью сделать сопоставимыми величины, имеющие различную размерность (градусы и метры). Затем можно строить график распределения трещин в виде розы. Можно "развернуть" два северных квадрата в прямую и построить прямоугольный график, где по оси ординат отложены градусы, а по оси абсцисс - проценты. Разметив оба графика рядом, получаем удобный для сравнения (рис. 20) материал.

Анализ графика трещиноватости показывает, что резко преобладают две связанных между собой системы трещин, объединяющиеся в так называемые динамопары: 310-320° - 30-40° (на их долю приходится более 40% всех трещин) и 80-90° - 350-360° (25% всех трещин). Эти же направления, только в ином количественном соотношении (24 и 50%), четко прослеживаются в карстовых полостях. Дальнейший анализ с учетом особенностей строения массива приводит к выводам о том, что наиболее часто встречающиеся трещины с простиранием 130-140° - 310-320° отличаются наименьшим раскрытием. Это так называемые трещины сжатия, перпендикулярные к направлениям сил сжатия в горном массиве. Естественно, что вдоль них хуже условия для фильтрации воды, а, следовательно, и меньше карстовых полостей.

Таблица 3.

Обработка материалов о тектонической трещиноватости (А) и направлениях ходов пещер района (Б)

Расчетные интервалы простирания трещин Тектоническая трещиноватость, число замеров Тектоническая трещиноватость, % Направление ходов пещер, сумма замеров, м Направление ходов пещер, %
1-10   0,7   2,1
11-20   1,9   0,9
341-350 - -   1,5
351-360   11,5   21,4
         
  х =5,5 х =5,6
  с =6,6 с =8

Динамопарой к трещинам сжатия являются трещины растяжения (от 30-40° до 210-220°). Они характеризуются большим раскрытием и поэтому охотнее используются ходами пещер. Однако наиболее благоприятные условия для движения воды возникают по трещинам скалывания, образующим с трещинами сжатия и растяжения углы, близкие к 45°. Именно эти трещины (от 170-180° до 350-360° и от 80-90° до 260-270°) используют карстовые полости района.

Иногда бывает, что графики трещиноватости и распределения ходов пещер по направлениям не имеют четких максимумов. Тогда для их выделения на фоне "белого шума" применяются методы математической статистики. По стандартной методике обработки материалов наблюдений, описанной во многих руководствах, для распределений трещиноватости определяются среднее арифметическое (х) и среднее квадратичное отклонения (с). На ортогональных диаграммах отмечаются жирными линиями значения, превосходящие стандартное (х+1,04с) отклонение и удвоенный стандарт (х+1,96с). Данные, лежащие ниже величины стандартного отклонения, отбрасываются, выше - подвергаются дальнейшему анализу.

Следует учитывать, что в горных районах, кроме вертикальных тектонических трещин, часто встречаются и наклонные. Поэтому для графического изучения трещиноватости применяются более сложные методики, включающие данные не только об их простирании, но и наклоне.

Положение трещин в пространстве является важной, но не единственной их характеристикой. Для спелеотуриста необходимо знать густоту трещин или расстояние между соседними трещинами. Спелеотуристов должны интересовать не все трещины массива, а лишь "пещерообразующие" трещины, т. е. те, которые при благоприятных условиях могут коррозионно расшириться текущей водой и превратиться в карстовые полости. Для выявления таких трещин следует обратиться к морфологии пещер. На своде пещерной галереи, не покрытой натеками, всегда имеется след проделанной вертикальной или наклонной трещины, послужившей ее зародышем, я на стенах видны следы поперечных трещин, секущих галерею с определенной периодичностью. Такие наблюдения доступны любому спелеотуристу, поскольку каждые пещерные галереи "проявляют" определенную трещину. Отсюда следует, что анализ положения галерей в пространстве и их густота может позволить изучать "пещерообразующие" карстующиеся трещины массива. Для проведения такой работы можно использовать планы пещер, особенно много информации можно извлечь из планов лабиринтных пещер.

Лабиринтные пещеры озерного типа образуются в условиях, когда расход воды в натуральном водотоке Qp превышает суммарный расход воды в водотоках формирующейся полости Qn т. е. ее пропускную способность (Qр>Qn). При выполнении этого условия происходит коррозионная проработка практически всех карстующихся трещин. Если измерить на плане пещеры расстояние между осевыми линиями соседних галерей, то можно получить расстояния между первичными "пещерообразующими" трещинами. Практическая работа такого рода заключается в построении графика или гистограммы распределения расстояний между осями соседних галерей. При построении гистограммы необходимо учитывать, что шаг построения распределения должен быть значительно меньше, чем выявляемое расстояние между соседними трещинами. Удобная величина шага равна 0,5 м. На рис. 19 (в, г) приведены в качестве примера гистограммы распределения расстояния между осями галерей в пещере Оптимистическая в Подолии (гипсы нижнего неогена) и в пещере Кизеловская на Урале (известняки нижнего карбона). Как видно, распределение расстояний между соседними трещинами описывается волнообразными затухающими кривыми с максимальными первым или вторым пиками. Величину периода колебаний (приблизительно 7 м) можно принять в качестве наиболее вероятного расстояния между соседними трещинами, образующими пещеры озерного типа.

Пещеры речного типа образуются при инфлюационном поглощении понором (входом) всего поверхностного водотока, так что Qp<Qn. Они состоят, как правило, из зигзагообразного меандрирующего коридора с системой боковых "дочерних" притоков. Если предположить, что каждый прямолинейный участок галереи выявляет вертикальную трещину, по которой он когда-то начал развиваться, то расстояние между соседними изгибами галереи будет соответствовать расстоянию между образовавшими ее трещинами. Это показано схематически на рис. 19, ж. На нем приведены также суммарные гистограммы встречаемости длин плановых проекций прямолинейных участков в пещерах Кутукского урочища в Башкирии (известняки девона и карбона) и массива Фишт на Кавказе (известняки юры). Они аналогичны гистограммам, построенным для пещер озерного типа, однако, общее количество максимумов на них значительно больше, а расстояние между соседними максимумами, т. е. между "пещерообразующими" трещинами, меньше (1,5-2,5 м). Важным является то обстоятельство, что распределения по расстояниям между соседними трещинами, образующими пещеры озерного и речного типов, для данного района являются очень узкими. Большое различие между их величинами (6-7 м и 1,5-2,5 м) может быть результатом того, что образование пещер разных морфогенетических типов связано с проработкой трещин разного ранга и происхождения. То, что сетки разных трещин сосуществуют в каждом карстующемся массиве, можно легко наблюдать на поверхности в районах развития "голого типа" карста в среднегорных условиях (массив Фишт, Бзыбский хребет на Кавказе).

Выделение "пещерообразующих" трещин из всего спектра трещин массива предложено спелеотуристами совсем недавно [10]. Поэтому описанный выше анализ планов пещер в период обработки спелеотуристами экспедиционных материалов может дать ценную информацию и позволить развить новые подходы в этом мало изученном вопросе.

Не менее ценную информацию можно получить и при определении расстояний между соседними трещинами в подземных условиях, имея в виду, что к трещинам обычно бывают приурочены определенные микроформы пещер: ниши в стенах, куполы в сводах и т. д. Разработка методики таких определений - дело будущего. Тем не менее все съемочные спелеотуристские группы должны при съемке обращать особое внимание на микроформы пещер, а при построении планов наносить их на чертежи горизонтальных и вертикальных проекций.

26. Происхождение полости. На основании наблюдений по пунктам I (7-10), II, III (20-25) излагаются доводы в пользу той или иной гипотезы о происхождении пещеры или шахты [5].

 

 

НАБЛЮДЕНИЯ ПОД ЗЕМЛЕЙ

27. Геологические наблюдения. Геологические наблюдения под землей проводятся по той же схеме, что и на поверхности. Особо отмечаются все изменения в залегании пород и их составе вдоль разреза полости. Это позволяет выяснить многие закономерности ее заложения и развития, а также облегчает рисовку абрисов.

28. Трещиноватость. Измеряются и привязываются к съемочным пикетам все трещины, видимые в стенах полости, и соответствующие им микроформы. Описываются также все особенности их закарстования (наличие карманов, расширений, заполнителя). Следует детально описать, зарисовать и сфотографировать участки, где тектонические нарушения секут уже сформировавшиеся ходы пещер или шахт. Тогда одна часть их галерей оказывается смещенной по отношению к другой.

29. Распределение остаточных, обвальных, водных механических отложений. При обследовании пещеры выделяются, и отдельно делается запись остаточных отложений (скопление глины на стенах ходов и на плоскостях тектонических трещин); обвальные отложения, формирующиеся у входа за счет физического выветривания (щебенка, дресва), а также в глубине пещер при обвалах со свода отдельных глыб, провалах сводов залов и междуэтажных перекрытий.

Особый тип обвальных отложений формируется у крупных тектонических нарушений. При формировании сбросов по обе стороны от смесителя нарушения происходит дробление горной породы Его первая стадия - формирование какирита (орешника) - мелкой тектонической брекчии, состоящей из обломков породы диаметром меньше 1 см; дальнейшее раздробление породы приводит к образованию катаклазита - плотной массы, состоящей из обломков микроскопического размера; в результате тонкого перетирания породы и ее перекристаллизации в зоне сброса получается милонит (плотная порода, напоминающая сланец и имеющая ленточное или волокнистое сложение). Все эти раздробленные и перетертые породы, сопровождающие разломные зоны, называются тектонитами.

В карстовых полостях под действием подземных вод часто происходит препарирование тектонических контактов. Тектонит осыпается и вымывается в галерею с постоянным водным потоком, образуя на его дне мощные накопления слабо сцементированного обломочного материала.

Особое внимание следует обращать на документацию сейсмогравитационных отложений (необходимо замерить размеры и сделать ориентировку всех поваленных натечных колонн, направления смещения разорванных сталагнатов и пр.). Изучаются водные механические отложения: определяются участки их накопления, отбираются пробы на гранулометрический анализ, детально описываются разрезы рыхлого заполнителя, сохраняющиеся кое-где в нишах и углублениях стен. (См. диаграмму - рис. 20). Специальный вопрос - изучение минерального состава водных механических отложений пещер. Оно дает богатую информацию о минералогии вмещающих пород и о путях движения подземных вод района. Для использования этих методик в спелеотуристской практике необходимо участие в работах геолога или минеролога.

30, 31. Распределение водных хемогенных отложений. Спелеотуристам необходимо документировать расположение натечных образований (сталактиты, сталагмиты, сталагнаты, колонны, занавеси, геликтиты, лунное молоко и пр.), образований пещерных рек и озер (гуры, забереги, пещерный жемчуг, кальцитовые пленки), кристаллов различных минералов (кальцит, исландский шпат, арагонит, гипс, барит), отложения известковых туфов у выходов пещерных рек на поверхность. Следует дать описание формы, размеров, цвета водных хемогенных отложений, оценивать их густоту (количество на 1 кв. м. потолка и пола), описывать условия образования (например, для пещерного жемчуга - высота борта ванночки, ее площадь, наличие стоячей или проточной воды, ее температура, минерализация и химический состав). Наиболее интересные объекты нужно сфотографировать.

Образцы пещерного заполнителя отбираются только в случае проведения специальных исследований по заданию научных организаций и таким образом, чтобы не повредить эстетической ценности пещер. Это требование вытекает из решений партии и правительства об охране природных богатств нашей страны. Следует помнить, что водные хемогенные отложения пещер пока еще слабо изучены. Между тем их специальные исследования позволяют получить интересную и принципиально новую информацию по ряду проблем геологической и гидрогеологической истории района, что очень важно при оборудовании пещер. Например, концентрация сталактитов и сталагмитов на определенных участках пещер свидетельствует о значительном водопритоке; форма этих образований часто позволяет определить его примерную величину (класс водопритока по Г. А. Максимовичу); сталактиты, опущенные в воду, свидетельствуют о подтоплении этого участка пещеры; коры на стенах фиксируют ежегодные уровни подъема воды в паводок; отклонение натеков от вертикали или их разрыв могут свидетельствовать о тектонических движениях района.

Внутреннее строение пещерных натечных отложений несет информацию о ритмичности процессов спелеолитогенеза. В сталактитах, сталагмитах и гурах прослеживаются ритмы продолжительностью 3, 5, 8, 11, 70-80 и 90-100 лет, а в прорванных плотинах гуров отмечен 1750-летний климатический "мегаритм". Изучение изотопного состава карбонатов натеков позволяет делать заключение о палеоклимате и температуре их образования.

Все эти наблюдения невозможно провести одновременно с топографической съемкой пещеры. Это специальные, тематические исследования. Для них следует сохранить в первозданном виде натечное убранство пещер.
После проведении топографической и геологической съемок необходимо обобщить эти материалы на одном чертеже. На плане в его верхнем левом углу выставляется значок, указывающий азимуты простирания и падения пород. Цифра у него соответствует углу падения пород (рис. 10, 12, 13). Если направления разрезов через карстовую полость точно соответствуют направлениям падения и простирания пород, то пласты показываются залегающими горизонтально, а на сечениях, параллельных линии падения, - падающими под углом, записанным у условного знака, и в ту же сторону. Если линии разрезов ориентированы под углом к линиям падения и простирания, то видимые в стенах пещер углы падения пород всегда меньше, чем истинные.

Для определения угла падения пород в косых разрезах удобна номограмма (рис. 21). Видимый угол падения (30°) определяется, как радиус четверти окружности, проведенной через точку пересечения прямых, соответствующих углу между линией простирания и направлением замера (32°) и истинного угла падения (47°).

 


Поделиться с друзьями:

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.036 с.