Руководство по проектированию оснований и фундаментов на пучинистых грунтах — КиберПедия 

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Руководство по проектированию оснований и фундаментов на пучинистых грунтах

2017-10-08 591
Руководство по проектированию оснований и фундаментов на пучинистых грунтах 0.00 из 5.00 0 оценок
Заказать работу

РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ОСНОВАНИЙ И ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

 

МОСКВА СТРОЙИЗДАТ 1979

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ ПРЕДИСЛОВИЕ 1. ОБЩИЕ ПОЛОЖЕНИЯ 2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ 3. ИНЖЕНЕРНО-МЕЛИОРАТИВНЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ДЕФОРМАЦИИ ОТ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТОВ 4. СТРОИТЕЛЬНО-КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕФОРМАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ПРОМЕРЗАНИИ И ПУЧЕНИИ ГРУНТОВ 5. ТЕПЛОВЫЕ И ХИМИЧЕСКИЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ 6. МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ ВЫПУЧИВАНИЯ НЕЗАГЛУБЛЯЕМЫХ И МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ 7. ТЕПЛОИЗОЛЯЦИОННЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ И НОРМАЛЬНЫХ СИЛ МОРОЗНОГО ВЫПУЧИВАНИЯ МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ 8. УКАЗАНИЯ К ПРОИЗВОДСТВУ СТРОИТЕЛЬНЫХ РАБОТ ПО НУЛЕВОМУ ЦИКЛУ 9. МЕРОПРИЯТИЯ НА ПЕРИОД ЭКСПЛУАТАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПО ЗАЩИТЕ ГРУНТОВ В ОСНОВАНИИ ОТ ИЗБЫТОЧНОГО ВОДОНАСЫЩЕНИЯ  

Руководство составлено по результатам теоретических и экспериментальных исследований деформаций и сил морозного пучения грунтов и материалам обобщения передового опыта фундаментостроения на пучинистых грунтах.

Предназначено для инженерно-технических работников проектных и строительных организаций.

ПРЕДИСЛОВИЕ

Действие сил морозного пучения грунтов и выпучивания фундаментов ухудшает условия эксплуатации и укорачивает сроки службы зданий и сооружений, вызывает их повреждения и деформации конструктивных элементов, что приводит к большим ежегодным затратам на ремонт повреждений и наносит народному хозяйству значительный ущерб.

В настоящем Руководстве приведены проверенные в практике строительства инженерно-мелиоративные, строительно-конструктивные, тепловые и термохимические мероприятия по борьбе с вредным влиянием морозного пучения грунтов на фундаменты зданий и сооружений, а также в кратком изложении даны указания по производству строительных работ по нулевому циклу и мероприятиям по предотвращению выпучивания незаглубляемых и малозаглубляемых фундаментов под малоэтажные каменные здания различного назначения и одноэтажные сборные деревянные дома в сельской местности.

Наиболее часто встречающиеся повреждения фундаментов и разрушения конструкций надфундаментного строения зданий и сооружений от морозного пучения обусловлены следующими факторами: а) составом грунтов в зоне сезонного промерзания и оттаивания; б) состоянием природной влажности грунтов и условиями их увлажнения; в) глубиной и скоростью сезонного промерзания грунтов; г) конструктивными особенностями фундаментов и надфундаментного строения; д) степенью теплового влияния отапливаемых зданий на глубину сезонного промерзания грунтов; е) эффективностью мероприятий, применяемых против воздействия сил морозного выпучивания фундаментов; ж) способами и условиями производства строительных работ по нулевому циклу; з) условиями эксплуатационного содержания зданий и сооружений. Чаще всего эти факторы воздействуют на фундаменты суммарно при различном их сочетании, и бывает трудно установить действительную причину повреждений в зданиях.

Как правило, результаты исследований взаимодействия промерзающего грунта с фундаментами, полученные по методу моделирования в лабораторных условиях, до сих пор не приносят позитивного эффекта при перенесении этих результатов в строительную практику, поэтому следует быть осмотрительнее с применением в природных условиях зависимостей, установленных в лаборатории.

При проектировании следует принимать в расчет результаты многолетних стационарных экспериментальных данных по исследованию взаимодействия промерзающего грунта с фундаментами в природных условиях, а не за одну зиму, так как климатические условия по отдельным годам с аномальными отклонениями не являются характерными для средней зимы данной местности.

Рекомендуемые в данном Руководстве противопучинные мероприятия могут применяться как для полного исключения деформаций от морозного выпучивания фундаментов, так и для частичного их снижения.

Инженерно-мелиоративные мероприятия в принципе являются коренными, поскольку они обеспечивают осушение грунтов в зоне нормативной глубины промерзания грунтов и снижение степени увлажнения слоя грунта на глубине 2-3 м ниже глубины сезонного промерзания. Это мероприятие возможно осуществить практически не для всех грунтовых и гидрогеологических условий, и тогда следует применять его только как уменьшающее деформацию грунта при промерзании в сочетании с другими мероприятиями.

Строительно-конструктивные мероприятия против сил морозного выпучивания фундаментов направлены в основном на приспособление конструкций фундаментов и частично надфундаментного строения к действующим силам морозного пучения грунтов и к их деформациям при промерзании и оттаивании (например, выбор типа конструкций фундаментов, глубина их заложения в грунт, жесткости конструкций надфундаментного строения, величин нагрузки на фундаменты, заанкеривание фундаментов в грунтах, залегающих ниже глубины промерзания и многие другие конструктивные приспособления).

Рекомендуемые в Руководстве конструктивные мероприятия приведены только в самых общих формулировках без надлежащей конкретизации, как, например, толщина слоя песчано-гравийной или щебеночной подушки под фундаментами при замене пучинистого грунта непучинистым, толщина слоя теплоизолирующих покрытий во время строительства и на период эксплуатации и др.; более детально даны рекомендации по размерам засыпки пазух непучинистым грунтом и по размерам теплоизоляционных подушек в зависимости от глубины промерзания грунтов и местного опыта строительства.

Расчеты фундаментов на устойчивость под действием сил морозного выпучивания, а также расчеты по конструктивным мероприятиям не являются обязательными для всех конструкций, применяемых в фундаментостроении, поэтому нельзя считать эти мероприятия универсальными по борьбе с вредным влиянием морозного пучения грунтов во всех случаях.

Тепловые и химические мероприятия являются коренными как по полному исключению деформаций от морозного пучения, так и по снижению сил морозного выпучивания и величин деформации фундаментов при промерзании грунтов. Они включают в себя применение рекомендуемых теплоизоляционных покрытий на поверхности грунта вокруг фундаментов, теплоносителей для обогрева грунтов и химических реагентов, понижающих температуру смерзания грунта с фундаментом и снижающих касательные силы сцепления мерзлого грунта с плоскостями фундаментов.

При обогреве грунт не будет иметь отрицательную температуру, что исключает его промерзание и морозное пучение.

При обработке грунта химическими реагентами, хотя грунт потом имеет отрицательную температуру, он не замерзает, поэтому также исключается промерзание и морозное пучение.

При назначении противопучинных мероприятий необходимо учитывать значимость зданий и сооружений, особенности технологических процессов производства и условия эксплуатационного режима, грунтовые и гидрогеологические условия, а также климатические характеристики данного района. При проектировании фундаментов на пучинистых грунтах следует отдавать предпочтение таким мероприятиям, которые наиболее экономичны и эффективны в данных условиях.

Изложенные в данном Руководстве мероприятия по борьбе с деформациями зданий и сооружений под действием сил морозного пучения грунтов помогут строителям повысить качество строящихся объектов, обеспечить устойчивость и долговечную эксплуатационную пригодность зданий и сооружений, исключить случаи удлинения сроков строительства, обеспечить ввод зданий и сооружений в промышленную эксплуатацию в плановые сроки, снизить непроизводительные разовые и ежегодно повторяющиеся расходы на ремонт и восстановление поврежденных силами морозного пучения зданий и сооружений.

Руководство составлено доктором техн. наук М. Ф. Киселевым.

Все замечания по тексту Руководства и предложения об улучшении просьба присылать в НИИ оснований и подземных сооружений Госстроя СССР по адресу: 109389, Москва, 2-я Институтская ул., д. 6.

ОБЩИЕ ПОЛОЖЕНИЯ

1.1. Данное Руководство предназначено для проектирования и строительства фундаментов зданий, промышленных сооружений и различного специального и. технологического оборудования на пучинистых грунтах.

Примечание. Рекомендации Руководства по противопучинным мероприятиям не распространяются на площадки, где сезонное промерзание грунтов сливается с вечномерзлым грунтом.

1.2. Руководство разработано в соответствии с основными положениями глав СНиП по проектированию оснований и фундаментов зданий и сооружений и оснований и фундаментов зданий и сооружений на вечномерзлых грунтах.

1.3. Пучинистыми (морозоопасными) грунтами называются такие грунты, которые при промерзании обладают свойством увеличивать свой объем при переходе в мерзлое состояние. Изменение объема грунта обнаруживается в природных условиях в поднятии в процессе промерзания и опускании при оттаивании дневной поверхности грунта. В результате этих объемных изменений происходят, деформации и наносят повреждения основаниям, фундаментам и надфундаментному строению зданий и сооружений.

1.4. В зависимости от гранулометрического состава грунта, его природной влажности, глубины промерзания и уровня стояния грунтовых вод грунты, склонные к деформациям при промерзании, по степени морозной пучинистости подразделяются на: сильнопучинистые, среднепучинистые, слабопучинистые и практически непучинистые.

1.5. Подразделения грунтов по степени морозной пучинистости в зависимости от изменяющегося во времени уровня грунтовых вод и показателя консистенции I L приняты по табл. 1 прил. 6 главы СНиП по проектированию оснований и фундаментов зданий и сооружений. Природную влажность грунтов на период эксплуатации при проектировании необходимо корректировать по пп. 3.17-3.20 упомянутой выше главы СНиП.

1.6. Основанием для установления степени пучинистости грунтов должны служить материалы гидрогеологических и грунтовых изысканий (состав грунта, его природная влажность и уровень стояния грунтовых вод, которые могут охарактеризовать участок застройки на глубину не менее удвоенной нормативной глубины промерзания грунта, считая от планировочной отметки).

В практике проектирования оснований и фундаментов часто встречаются большие затруднения при оценке грунтов по степени их морозной пучинистости на основании имеющихся материалов инженерно-геологических изысканий, так как обычно слой сезонного промерзания не считается основанием для фундаментов и для него не определяются необходимые характеристики грунта. Если же первые 1,5-2 м в инженерно-геологических материалах охарактеризованы только как «растительный слой» или же как «почва серая», то при отсутствии уровня грунтовых вод близко к слою промерзания не представляется возможности установить степень пучинистости грунтов. При отсутствии характеристик промерзающего слоя грунта надо провести отдельно дополнительные изыскания на стройплощадке, желательно под каждое стоящее здание.

1.7. Проектирование оснований и фундаментов зданий и сооружений на пучинистых грунтах должно осуществляться с учетом:

Таблица 1

Наименование грунта по степени морозной пучинистости Пределы положения z, м, уровня грунтовых вод ниже расчетной глубины промерзания у фундамента Консистенция глинистого грунта I L
песок мелкий песок пылеватый супесь суглинок глина
Сильнопучинистые - - z ≤0,5 z ≤1 z ≤1,5 I L>0,5
Среднепучинистые - z ≤0,5 0,5< z ≤1 1< z ≤1,5 1,5<z≤2 0,25< I L≤0,5
Слабопучинистые z ≤0,5 0,5< z ≤1 1< z ≤1,5 1,5< z ≤2,5 2< z ≤3 0< I L≤0,25
Практически непучинистые z >0,5 z >1 z >1,5 z >2,5 z >3 I L≤0

Примечания: 1. Консистенция глинистых грунтов I L должна приниматься по их природной влажности, соответствующей периоду начала промерзания (до миграции влаги в результате действия отрицательных температур). При наличии в пределах расчетной глубины промерзания глинистых грунтов различной консистенции степень морозной пучинистости этих грунтов в целом принимается по среднему взвешенному значению их консистенции.

2. Крупнообломочные грунты с глинистым заполнителем, содержащие в своем составе более 30% по весу частиц размером менее 0,1 мм, при положении уровня грунтовых вод ниже расчетной глубины промерзания от 1 до 2 м относятся к среднепучинистым грунтам, а менее одного метра - к сильнопучинистым.

3. Величина z - разность между глубиной залегания уровня грунтовых вод и расчетной глубиной промерзания грунта, определяемая по формуле: z = Н 0H, где Н 0-расстояние от планировочной отметки до залегания уровня грунтовых вод; Н - расчетная глубина промерзания, м, по главе СНиП II-15-74.

а) степени морозной пучинистости грунтов;

б) рельефа местности, времени и количества выпадающих атмосферных осадков, гидрогеологического режима, условий увлажнения грунтов и глубины сезонного промерзания;

в) экспозиции строительной площадки по отношению к освещаемости солнцем;

г) назначения, сроков строительства и службы, значимости зданий и сооружений, технологических и эксплуатационных условий;

д) технической и экономической целесообразности назначаемых конструкций фундаментов, трудоемкости и продолжительности работ по нулевому циклу и экономии строительных материалов;

е) возможности изменения гидрогеологического режима грунтов, условий их увлажнения в период строительства и за весь срок эксплуатации здания или сооружения;

ж) имеющихся результатов специальных исследований по определению сил и деформаций морозного пучения грунтов (если таковые имеются).

1.8. Объем и виды специальных исследований свойств грунтов и общих инженерно-геологических и гидрогеологических изысканий предусматриваются общей программой изысканий или дополнительными зданиями к общей программе по согласованию с заказчиком в зависимости от геологических условий, стадии проектирования и специфики проектируемых зданий и сооружений.

Пример расчета устойчивости фундамента по условиям воздействия касательных сил морозного выпучивания

Для примера расчета устойчивости фундаментов приняты следующие грунтовые условия площадки строительства:

1) растительный слой 0,2 м;

2) суглинок покровный, желто-коричневый от 0,2 до 4,5 м; объемный вес грунта 1,9 г/см3; природная влажность колеблется от 24 до 27%; влажность на границе раскатывания 18%; на пределе текучести 30%; число пластичности 12; залегание уровня грунтовых вод на глубине 2,8 м от дневной поверхности. Суглинок мягкопластичной консистенции - по природной влажности и условиям увлажнения относится к сильнопучинистому.

Требуется проверить монолитный столбчатый железобетонный фундамент с анкерной плитой на устойчивость под действием сил морозного выпучивания (площадь анкерной плиты 1,4×1,4=1,96 м2; сечение стойки 0,5×0,5 м; высота плиты 0,2 м).

Исходные данные для поверочного расчета следующие: N н - нормативная нагрузка от веса сооружения и фундамента с весом грунта на уступах, равная 40 т; Н - расчетная глубина промерзания грунта, равная 2 м; h 1 - глубина заложения фундамента, равная 2,2 м; δоб - объемный вес грунта, равный 2 т/м3; τн - 1 кг/см2; F т=20×140×4=11200 см2; f т - 0,2 кг/см2; n =1,1; n 1=0,9; F - 200×200=40000 см2.

По формуле (3) получим (40+0,2×11200)0,9<1,1×1×40000;

38 т<44 т

Как видим, фундамент данной конструкции на сильнопучинистых грунтах при расчетной глубине промерзания грунта в 2 м не обеспечит устойчивости при промерзании грунтов в период эксплуатации.

Конструктивно можно принять сечение стойки не 50×50, а 40×40, и тогда правая часть уравнения выразится в 35,2 т, что вполне обеспечит устойчивость фундамента при промерзании грунта за весь период эксплуатации здания.

4.22. При неизбежности промерзания пучинистого грунта под подошвой фундамента должна производиться проверка устойчивости фундамента на совместное действие касательных и нормальных сил морозного пучения. Проверка выполняется по формуле

(6)

где n 1, N н, n, τн, F - обозначения те же, что и в формуле (4.3);

F ф - площадь подошвы фундамента, см;

h 1 - глубина промерзания грунта, считая от подошвы фундамента, см;

σн - нормативное значение нормального давления морозного пучения, создаваемое 1 см промороженного слоя грунта, кгс/см3.

Значение σн принимается в зависимости от степени пучинистости грунта и от размеров площади подошвы фундамента на основании опытных данных по табл. 2.

Таблица 2

Наименование грунта по степени морозной пучинистости При площади подошвы фундамента, см2
50×50 70×70 100×100 >100×100
Сильнопучинистые 0,06 0,04 0,03 0,02
Среднепучинистые 0,05 0,03 0,02 0,01
Слабопучинистые 0,04 0,02 0,01 -

Глубину промерзания грунта под подошвой фундамента h 1 при незаглубленных фундаментах надлежит ограничивать не более 1 м, а для заглубленных фундаментов более 0,5 м, слой мерзлого грунта рекомендуется принимать не более 0,5 м.

Пример расчета устойчивости отдельностоящего железобетонного анкерного фундамента на совместное действие касательных и нормальных сил морозного выпучивания

Для примера расчета примем следующие данные:

1) грунт суглинок до глубины 150 см мягкопластичной консистенции, по степени морозной пучинистости относится к среднепучинистому; ниже залегает плотный суглинок твердой и полутвердой консистенции, по степени морозной пучинистости относится к слабопучинистому;

2) фундамент столбчатый сечением 50×50 см с анкерной плитой сечением 100×100 и высотой 25 см; Н н - нормативная глубина промерзания, равная 2,2 м; h - глубина заложения фундамента, равная 1,8 м; h а=1,8–0,25=1,55; h 1=40 см; γcp - средний объемный вес грунта, равный 2 т/м3; F ф=100×100=10000 см2; F a=(100×100)–(50×50)=7500 см2; F =(155×200)+(25×400)=41000 см2=4,1 м2; τн=0,8 кгс/см2; σн=0,02 кгс/см3; Q н=2γcp F a h a=2×2×0,75×1,55=4,65 т; n 1=0,9; n =1,1; N н - нормативная нагрузка на фундамент 40 т.

Подставляя значения в формулу (6), получим 0,9(40+4,65<1,1(0,8×41000+10000×40×0,02);

41,185<44,8 т.

Как видим, по результату расчета условие устойчивости фундамента при совместном воздействии касательных и нормальных сил морозного пучения не соблюдается, а поэтому потребуется уравновесить силы морозного выпучивания, чтобы обеспечить устойчивость фундамента. Это можно достигнуть добавлением нагрузки на фундамент или же увеличением глубины заложения подошвы фундамента, определив величину h 1, т.е. промерзание грунта ниже подошвы фундамента по формуле

(7)

Подставляя значения величин из приведенного примера расчета устойчивости фундамента и решая уравнение, получим h 1=25 см. Следовательно, можно заглубить фундамент не на 1,8 м, а на 1,95 см и тогда условие устойчивости фундамента будет соблюдаться.

Примечание. По формуле (6) предусмотрены два коэффициента перегрузки n 1=0,9 и n =1,1, т.е. нагрузка на грунт под подошвой фундамента снижается на 10%, а сила морозного выпучивания увеличивается на 10%. Скорее n 1 будет коэффициентом недогрузки. В нашем примере логичнее было бы коэффициент n принимать равным 1, потому как по сути никакой перегрузки нет.

4.23. Во избежание деформаций каменных легких зданий следует фундаменты под стены на сильнопучинистых грунтах применять монолитными с анкерами по расчету на действие касательных сил морозного выпучивания. Сборные блоки и фундаментные башмаки надлежит замоноличивать по расчету на разрыв.

Рекомендуется отдавать предпочтение таким конструкциям фундаментов, которые позволяют механизировать процесс производства строительных работ и сократить объем земляных работ по рытью котлованов, а также транспортировку, обратную засыпку и трамбовку грунта при засыпке пазух. На сильно- и среднепучинистых грунтах этому условию удовлетворяют столбчатые, свайные и анкерные свайные фундаменты, при устройстве которых не требуется производить больших объемов земляных работ.

4.24. При строительстве малоэтажных зданий на сильнопучинистых грунтах рекомендуется проектировать крыльцо на сплошной железобетонной плите, по гравийно-песчаной подушке толщиной 30-50 см (верх плиты должен быть ниже пола в тамбуре на 10 см с зазором между крыльцом и зданием 2-3 см). Для капитальных каменных зданий следует предусматривать устройство крылец на сборных железобетонных консолях с зазором между поверхностью грунта и низом консолей не менее 20 см; при столбчатых или свайных фундаментах следует предусматривать промежуточные опоры, с тем чтобы расположение столбов или свай под наружные стены совпадало с местом установки консолей для крылец.

4.25. При наличии местных дешевых строительных материалов (песок, гравий, щебень, балласт и др.) или непучинистых грунтов вблизи строительной площадки целесообразно устройство под зданиями или сооружениями сплошных подсыпок толщиной на 2/3 нормативной глубины промерзания или засыпок пазух с наружной стороны фундаментов из непучинистых материалов или грунтов (щебень, гравий, галька, пески крупные и средние, а также шлаки, горелые породы и другие горнопромышленные отходы).

Осушение дренирующих засыпок в пазухах и подушек под фундаментами при наличии водопоглощающих грунтов ниже пучинистого слоя должно осуществляться путем сброса воды через дренирующие скважины или воронки. При проектировании фундаментов на подсыпках следует руководствоваться «Указаниями по проектированию и устройству фундаментов и подвалов зданий и сооружений в глинистых грунтах по методу дренирующих прослоек».

4.26. При строительстве зданий и сооружений на пучинистых грунтах из сборных конструкций пазухи необходимо засыпать с тщательным уплотнением грунта немедленно после укладки цокольного перекрытия; в остальных случаях пазухи должны засыпаться с утрамбовкой грунта по мере возведения кладки или монтажа фундаментов.

4-27. Проектирование заглубления фундаментов в пучинистых грунтах на расчетную глубину промерзания грунтов с учетом теплового влияния зданий и сооружений принимается по главе СНиП по проектированию оснований зданий и сооружений в тех случаях, когда они не будут перезимовывать без предохранения грунтов от промерзания в период строительства и после его окончания до ввода здания в постоянную эксплуатацию с нормальным отоплением или когда они не будут находиться в длительной консервации.

4.28. При проектировании на пучинистых грунтах фундаментов промышленных зданий, строительство которых длится в течение двух - трех лет (например, теплоэлектростанции), в проектах следует предусматривать мероприятия по предохранению грунтов оснований от увлажнения и промерзания.

4.29. При строительстве малоэтажных зданий следует предусматривать декоративные цокольные обшивки с засыпкой пространства между цоколем и заборной стенкой малотеплопроводными и невлагоемкими материалами (опилками, шлаком, гравием, сухим песком и различными отходами горной промышленности).

4.30. Замену пучинистого грунта непучинистым у фундаментов отапливаемых зданий и сооружений рекомендуется производить только с наружной стороны фундаментов. Для неотапливаемых зданий и сооружений замену пучинистого грунта непучинистым рекомендуется производить с обеих сторон фундаментов под наружные стены и также с обеих сторон фундаментов под внутренние несущие стены.

Ширина пазухи для засыпки непучинистым грунтом определяется в зависимости от глубины промерзания грунтов и от гидрогеологических условий грунтов оснований.

При условии отвода воды из засыпок пазух и при глубине промерзания грунтов до 1 м ширина пазухи для засыпки непучинистого грунта (песка, гравия, гальки, щебня) достаточна в 0,2 м. С заглублением фундаментов от 1 до 1,6 м минимально допустимая ширила пазухи для засыпки непучинистого грунта должна быть не менее 0,3 м, и при глубине промерзания грунтов от 1,5 до 2,5 м пазуху желательно засыпать на ширину не менее 0,5 м, Глубина засылки пазух в данном случае принимается не менее ¾ глубины заложения фундамента, считая от планировочной отметки.

При невозможности отвода воды из непучинистого грунта засыпку пазух ориентировочно можно рекомендовать на ширину, равную на уровне подошвы фундамента 0,25-0,5 м и на уровне дневной поверхности грунта не менее расчетной глубины промерзания грунтов с обязательным перекрытием непучинистого материала засыпки отмосткой с асфальтовым покрытием.

Таблица 3

Глубина промерзания грунта, м Размеры отмостки, м
толщина ширина
  0,2  
1,5 0,3 1,5
2 и более 0,4  

4.31. Устройство шлаковых подушек по периметру зданий с наружной стороны фундаментов надлежит применять для жилых и промышленных отапливаемых зданий и сооружений. Шлаковая подушка укладывается толщиной слоя от 0,2 до 0,4 м и шириной от 1 до 2 м в зависимости от глубины промерзания грунтов (табл. 3) и прикрывается отмосткой.

При отсутствии гранулированного шлака рекомендуется при соответствующем технико-экономическом обосновании применять керамзит с теми же размерами толщины и ширины подушки, что и для шлаковых подушек.

Таблица 4

Группы по пучинистости Положение уровня грунтовых вод z, м, для грунтов Консистенция I L
крупнообломочных с заполнителем супесей суглинков глин
I z <0,3 z ≤0,3 z ≤0,7 z ≤1 I L>0,5
II z <0,4 z ≤0,5 z ≤1 z ≤1,5 0,25< I L≤0,5

Примечание: Величина z - расстояние, превышающее расчетную глубину промерзания, т.е. разность между глубиной залегания уровня грунтовых вод на период промерзания и расчетной глубиной промерзания.

По физическому состоянию чрезмерно пучинистые грунты имеют свои отличительные характеристики от сильнопучинистых грунтов.

К чрезмерно пучинистым грунтам (группа I по табл.4) относится, как правило, отложения в зоне промерзания, которые не могут служить в качестве естественного Основания вследствие их малой плотности сложения. К таким относятся грунты текуче-пластичной я текучей консистенции, заторфованные грунты, и торфяники, намытые гидромониторами грунты, насыпные грунты в обводненном состоянии и др.

Сильнопучинистые грунты (группа II, табл.4) отличаются от чрезмерно пучинистых по физическому состоянию. К ним относятся все виды грунтов, которые по плотности в природном сложении могут быть использованы в качестве естественного основания под фундаменты некоторых зданий и сооружений без специальной подготовки основания.

Проверка незаглубляемых фундаментов на действие нормальных сил морозного пучения выполняется по формуле

(8)

где N н - нормативная нагрузка на основание в уровне подошвы фундамента, кгс;

F ф - площадь подошвы фундамента, см2;

n 1 - коэффициент перегрузки, принимаемый равным 0,9;

n - коэффициент перегрузки, принимаемый равным 1,1;

h 1 - глубина промерзания грунта ниже подошвы фундамента, см;

σн - нормативное значение нормального давления морозного пучения, кгс/см3, принимается по таблице 2.

Пример. Требуется проверить фундамент-плиту из керамзитобетона с размерами 100×150 см под колонну одноэтажного каркасного здания. Глубина промерзания грунта ниже подошвы плиты 60 см, нагрузка на колонну, опирающуюся на плиту, 18 т. Плита уложена на поверхность песчаной подсыпки без заглубления в грунт. Грунт в основании плиты по степени морозной пучинистости относится к среднепучинистому.

Подставляя значения величин в формулу (6), получим величину нормальных сил морозного пучения грунтов N н=18 т; n 1=0,9; n =1,1; F ф=100×150=15000 см2; h 1=50 см; σн=0,02 (по табл.2); 0,9×18≥1,1×150×50×100×0,02; 16,2<16,5 т.

Экспериментальная проверка показала, что при такой нагрузке фундамент каркасного здания при промерзании грунта на 120 см наблюдались вертикальные смещения фундаментных плит от 3 до 10 мм, что вполне допустимо для каркасных одноэтажных зданий.

Пределы применимости мероприятия по предотвращению выпучивания незаглубляемых и малозаглубляемых фундаментов составлены на основании обобщения имеющегося опыта строительства и эксплуатации зданий и сооружений, возводимых в качестве экспериментальных на пучинистых грунтах.

РЕКОМЕНДАЦИИ ПО УСТРОЙСТВУ ТЕПЛОИЗОЛЯЦИОННЫХ МЕРОПРИЯТИЙ ДЛЯ СНИЖЕНИЯ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ

7.2. В целях обеспечения сохранности отмосток и их теплоизоляционного эффекта рекомендуется вместо отмосток на теплоизоляционных подушках применять для отмосток керамзитобетон с объемным весом в сухом состоянии от 800 до 1000 кгс/м3 при расчетной величине коэффициента теплопроводности соответственно в сухом состоянии 0,2-0,17 и в водонасыщенном 0,3-0,25 ккал/м·ч·°С.

Укладку отмостки из керамзитобетона следует производить только после тщательного уплотнения и планировки грунта возле фундаментов у наружных стен.

Керамзитобетонную отмостку желательно укладывать на поверхность грунта с расчетом меньшего ее водонасыщения. Не следует укладывать керамзитобетон в открытое в грунте корыто на толщину отмостки. Если же по конструктивным особенностям этого избежать нельзя, то необходимо предусмотреть дренажные воронки для отвода воды из-под керамзитобетонной отмостки.

Конструкция керамзитобетонной отмостки принимается простейшей формы в виде ленты, размеры которой назначаются в зависимости от расчетной глубины промерзания грунта по табл. 5.

Таблица 5

Глубина промерзания грунта, м Размеры отмостки, м
толщина ширина
До 1 0,15 0,7
1,5 0,2  
2 и более 0,3 1,5

По данным экспериментальной проверки теплоизоляционного эффекта отмостки на керамзитовой подушке толщиной 0,2 м и шириной 1,5 м глубина промерзания грунта у ограждения зимних теплиц уменьшалась в 3 раза и коэффициент теплового влияния отапливаемой теплицы с отмосткой на керамзитовой подушке m t получен в среднем 0,269.

В такой же экспериментальной проверке на строительных объектах нуждаются предлагаемые размеры керамзитобетонных отмосток и конструкций незаглубляемых и малозаглубляемых железобетонных фундаментов на керамзите для временных зданий и сооружений строительных баз теплоэлектростанций.

РУКОВОДСТВО ПО ПРОЕКТИРОВАНИЮ ОСНОВАНИЙ И ФУНДАМЕНТОВ НА ПУЧИНИСТЫХ ГРУНТАХ

 

МОСКВА СТРОЙИЗДАТ 1979

СОДЕРЖАНИЕ

СОДЕРЖАНИЕ ПРЕДИСЛОВИЕ 1. ОБЩИЕ ПОЛОЖЕНИЯ 2. ОСНОВНЫЕ ПОЛОЖЕНИЯ ПО ПРОЕКТИРОВАНИЮ 3. ИНЖЕНЕРНО-МЕЛИОРАТИВНЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ДЕФОРМАЦИИ ОТ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ ГРУНТОВ 4. СТРОИТЕЛЬНО-КОНСТРУКТИВНЫЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕФОРМАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПРИ ПРОМЕРЗАНИИ И ПУЧЕНИИ ГРУНТОВ 5. ТЕПЛОВЫЕ И ХИМИЧЕСКИЕ МЕРОПРИЯТИЯ ПРОТИВ ДЕЙСТВИЯ СИЛ МОРОЗНОГО ПУЧЕНИЯ 6. МЕРОПРИЯТИЯ ПО ПРЕДОТВРАЩЕНИЮ ВЫПУЧИВАНИЯ НЕЗАГЛУБЛЯЕМЫХ И МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ 7. ТЕПЛОИЗОЛЯЦИОННЫЕ МЕРОПРИЯТИЯ ПО СНИЖЕНИЮ ГЛУБИНЫ ПРОМЕРЗАНИЯ ГРУНТОВ И НОРМАЛЬНЫХ СИЛ МОРОЗНОГО ВЫПУЧИВАНИЯ МАЛОЗАГЛУБЛЯЕМЫХ ФУНДАМЕНТОВ 8. УКАЗАНИЯ К ПРОИЗВОДСТВУ СТРОИТЕЛЬНЫХ РАБОТ ПО НУЛЕВОМУ ЦИКЛУ 9. МЕРОПРИЯТИЯ НА ПЕРИОД ЭКСПЛУАТАЦИИ ЗДАНИЙ И СООРУЖЕНИЙ ПО ЗАЩИТЕ ГРУНТОВ В ОСНОВАНИИ ОТ ИЗБЫТОЧНОГО ВОДОНАСЫЩЕНИЯ  

Руководство составлено по результатам теоретических и экспериментальных исследований деформаций и сил морозного пучения грунтов и материалам обобщения передового опыта фундаментостроения на пучинистых грунтах.

Предназначено для инженерно-технических работников проектных и строительных организаций.

ПРЕДИСЛОВИЕ

Действие сил морозного пучения грунтов и выпучивания фундаментов ухудшает условия эксплуатации и укорачивает сроки службы зданий и сооружений, вызывает их повреждения и деформации конструктивных элементов, что приводит к большим ежегодным затратам на ремонт повреждений и наносит народному хозяйству значительный ущерб.

В настоящем Руководстве приведены проверенные в практике строительства инженерно-мелиоративные, строительно-конструктивные, тепловые и термохимические мероприятия по борьбе с вредным влиянием морозного пучения грунтов на фундаменты зданий и сооружений, а также в кратком изложении даны указания по производству строительных работ по нулевому циклу и мероприятиям по предотвращению выпучивания незаглубляемых и малозаглубляемых фундаментов под малоэтажные каменные здания различного назначения и одноэтажные сборные деревянные дома в сельской местности.

Наиболее часто встречающиеся повреждения фундаментов и разрушения конструкций надфундаментного строения зданий и сооружений от морозного пучения обусловлены следующими факторами: а) составом грунтов в зоне сезонного промерзания и оттаивания; б) состоянием природной влажности грунтов и условиями их увлажнения; в) глубиной и скоростью сезонного промерзания грунтов; г) конструктивными особенностями фундаментов и надфундаментного строения; д) степенью теплового влияния отапливаемых зданий на глубину сезонного промерзания грунтов; е) эффективностью мероприятий, применяемых против воздействия сил морозного выпучивания фундаментов; ж) способами и условиями производства строительных работ по нулевому циклу; з) условиями эксплуатационного содержания зданий и сооружений. Чаще всего эти факторы воздействуют на фундаменты суммарно при различном их сочетании, и бывает трудно установить действительную причину повреждений в зданиях.

Как правило, результаты исследований взаимодействия промерзающего грунта с фундаментами, полученные по методу моделирования в лабораторных условиях, до сих пор не приносят позитивного эффекта при перенесении этих результатов в строительную практику, поэтому следует быть осмотрительнее с применением в природных условиях зависимостей, установленных в лаборатории.

При проектировании следует принимать в расчет результаты многолетних стационарных экспериментальных данных по исследованию взаимодействия промерзающего грунта с фун<


Поделиться с друзьями:

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.098 с.