Белки как биополимеры. Свойства и биологические. — КиберПедия 

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Белки как биополимеры. Свойства и биологические.

2017-06-26 1781
Белки как биополимеры. Свойства и биологические. 5.00 из 5.00 1 оценка
Заказать работу

Белки – это биополимеры, состоящие из остатков аминокислот, соединённых между собой пептидными связями (-CO-NH-). Белки входят в состав клеток и тканей всех живых организмов. В молекулы белков входит 20 остатков различных аминокислот. Структура белка-

Обладают неисчерпаемым разнообразием структур.

Первичная структура – это последовательность аминокислотных звеньев в линейной полипептидной цепи.

Вторичная структура – это конфигурация белковой молекулы, напоминающая спираль, которая образуется в результате скручивания полипептидной цепи за счёт водородных связей между группами: CO и NH.

Третичная структура – это пространственная конфигурация, принимает закрученная в спираль полипептидная цепь.

Четвертичная структура – это полимерные образования из нескольких макромолекул белка. Физические свойства-

Одни белки растворяются в воде, образуя, коллоидные растворы (например, белок яйца); другие растворяются в разбавленных растворах солей; третьи нерастворимы (например, белки покровных тканей). Химические свойства

1. Денатурация – разрушение вторичной, третичной структуры белка под действием различных факторов: температура, действие кислот, солей тяжёлых металлов, спиртов и т.д. 2. Качественные реакции на белки:

а) При горении белка – запах палёных перьев.

б) Белок +HNO3 → жёлтая окраска

в) Раствор белка +NaOH + CuSO4 → фиолетовая окраска

3. Гидролиз Белок + Н2О → смесь аминокислот

Функции белков в природе:

· каталитические (ферменты);

· регуляторные (гормоны);

· структурные (кератин шерсти, фиброин шелка, коллаген);

полимерами называются вещества, имеющие большую молекулярную массу, состоящую из множества повторяющихся структурных звеньев. Существуют природные полимеры (крахмал, белки, целлюлоза, каучук) и синтетические полимеры (полиэтилен, фенопласты). Низкомолекулярные вещества, из которых синтезируют полимеры, называются мономерами.

CH2=CH2 мономер полиэтилена - этилен

(-CH2-CH2-)n –молекула полимера

-CH2-CH2- – структурное звено – многократно повторяющаяся группа атомов. Физические свойства-

Полимеры имеют высокую механическую прочность. Стойкие, Не имеют определённой температуры плавления, не растворяются в воде и в большинстве органических растворителей. Полиэтилен – полупрозрачный материал, воздухо- и влагонепроницаем, легкоплавкий, химически стойкий. Применяется для плёнок, труб, бытовых изделий (посуда, игрушки), электроизоляции, поверхностных покрытий.

8. Взаимное влияние атомов в молекулах органических веществ. Этанол - типичный представитель класса предельных одноатомных спиртов, в котором функциональная группа ОН связана с углеводородным радикалом. Так как кислород обладает большей электроотрицательностью по сравнению с водородом и углеродом, связь О-Н в молекуле этаноласильно полярная, с избыточным отрицательным зарядом на атоме кислорода и с положительным зарядом на атоме водорода. Вследствие этого атом водорода гидроксогруппы обладает большей реакционной способностью, чем атомы водорода в углеводородном радикале. Спирты являются амфотерными соединениями, т. е. проявляют свойства кислот и оснований.

Фенол - это производное бензола, в котором один из атомов водорода

замещен на гидроксильную группу.

Гидроксильная группа и бензольное кольцо оказывают влияние друг на друга. Под действием n-электронного облака неподеленная пара кислорода смещается в сторону бензольного ядра (возникает эффект сопряжения). Вследствие этого усиливается поляризация связи О ~ Н и возрастает подвижность атомов водорода в гидроксогруппе. Влияние же гидроксогруппы на свойства бензольного кольца проявляется в увеличении подвижности атомов водорода в положениях 2, 4, 6. Фенол обладает более выраженными кислотными свойствами по сравнению со спиртами, в частности с этанолом. Раствор фенола, применяемый для дезинфекции, называется карболовой кислотой.

Этанол и фенол реагируют со щелочными металлами (кислотные свойства

и (основное свойство), для этанол взаимодействует с галогеноводородам

фенола такая реакция невозможна Н25О4 С2Н50Н + НС] -) С2Н5С] + Н20

фенол реагирует с растворами щелочей (кислотное свойство), для этанола такая реакция невозможна

анола и фенола - веществ с одина-

Таким образом, сравнив своиства эт но различнымисвойствами, вывод о взаимном влиянии атомов.

9. Виды химическойсвязи: ионная, ковалентная (полярная, неполярная}, металлическая. Ковалентная связь образуется за счет перекрывания электронных облаков двух атомов. Каждый̆ атом предоставляет один неспаренный электрон для образования одной химической связи, при этом происходит образование общей электронной пары. Если ковалентная связь образуется между двумя одинаковыми атомами, она называется неполярной.

Если ковалентная связь образуется между двумя различными атомами, общая электронная пара смещайся к атому с большей электроотрицательностью (электроотрицательностью называется способность атома притягивать электроны). В этом случае возникает полярная ковалентная связь. Частным случаем ковалентной связи является донорно-акцепторная связь. Д ля ее образованья у одного атома должна быть свободная орбиталь на внешнем электронном уровне, а у другого — пара электронов. Один атом (донор) предоставляет другому (акцептору) свою электронную пару, в результате она становится общей, образуется химическая связь. Пример — молекула СО:

Ионная связь образуется между атомами с сильно отличающейся электроотрицательностью. При этом один атом отдает электроны и превращается в положительно заряженный ион, а атом, получивший электроны, в отрицательно заряженный. Ионы удерживаются вместе за счет сил электростатического притяжения.

Водородная связь образуется между полярными молекулами (вода, спирты, аммиак) за счет притяжения разноименных зарядов.

Прочность водородной связи существенно (~20 раз) меньше, чем ионной или ковалентной связи.

 

10. Водородные соединения неметаллов. Закономерности в изменений их свойств в связи с положением химических элементов в периодической системе Гидриды, В соединениях с неметаллами водород проявляет степень окисления +1. Поскольку энергия ионизации водорода очень большая, химическая связь его с неметаллами не ионная, а полярно-ковалентная. Наиболее электроотрицательные р-элементы в правой части периодов, например сера и хлор, реагируют с водородом, образуя ковалентные гидриды, которые обладают кислотными свойствами и сила этих кислот увеличивается по мере увеличения размера атома присоединяемого к водороду неметалла. Исключениями являются метан СН4, представляющий собой нейтральное соединение, а также аммиак NH3, обладающий основными свойствами. Водородные соединения неметаллов хорошо растворимы в воде и образуют кислоты с теми же формулами. Более электроотрицательные р-элементы, например алюминий, кремний и фосфор, в нагретом состоянии не реагируют с водородом. 11. Начала термодинамики. Представления об энтропии. Термодинамика изучает физические объекты материального мира только в состоянии термодинамического равновесия. Находящаяся при определенных неизменных внешних условиях и постоянной температуре окружающей среды. Тем термодинамика рассматривает условия существования необратимых процессов. Например, распространение молекул газа (закон диффузии). Задачей термодинамики необратимых процессов сначала было изучение неравновесных процессов для состояний, не слишком сильно отличающихся от равновесного. Второе начало термодинамики. Энтропия. Второе начало термодинамики вводит новую функцию состояния – энтропию. Термин «энтропия означает «превращение». В формулировке: «Каждая термодинамическая система обладает функцией состояния, называемой энтропией. Энтропия вычисляется следующим образом. Система переводится из произвольно выбранного начального состояния в соответствующее конечное состояние через последовательность состояний равновесия; вычисляются все проводимые при этом к системе порции тепла dQ, делятся каждая на соответствующую ей абсолютную температуру Т, и все полученные таким образом значения суммируются (первая часть второго начала термодинамики). При реальных (неидеальных) процессах энтропия изолированной системы возрастает». Учета и сохранения количества энергии еще недостаточно для того, чтобы судить о возможности того или иного процесса. Энергию следует характеризовать не только количеством, но и качеством. При этом существенно, что энергия определенного качества самопроизвольно может превращаться только в энергию более низкого качества. Величиной, определяющей качество энергии, и является энтропия. Процессы в живой и нежи вой материи в целом протекают так, что энтропия в замкнутых изолированных системах возрастает, а качество энергии понижается. В этом и есть смысл второго начала термодинамики. Закон 3! W – число различных состояний системы, доступное ей при данных условиях, или термодинамическая вероятность макросостояния системы.

энтропия правильно сформированного кристалла чистого вещества при абсолютном нуле равна нулю. Этот постулат может быть объяснен статистической термодинамикой, согласно которой энтропия есть мера беспорядочности системы на микроуровне: S = kblnW

12. Гинетическая связь углеводородов. Среди множества видов связей можно выделить такие, которые указывают, что первично, а что вторично, как одни объекты или явления порождают другие. Такие виды связей называются генетическими.
Между гомологическими рядами углеводородов существует генетическая связь, которая обнаруживается в процессе взаимного превращения этих веществ. Например,
С2Н6 - С2Н4 - С2Н2 - С6Н6 - С6Н6Сl6;

 

13. Гидролиз солей Гидролизом называется взаимодействие ионов соли с Н2О, приводящее к образованию слабого электролита.

Любую соль можно представить как продукт взаимодействия кислоты и основания.

В зависимости от видов этих исходных веществ выделяют 4 типа солей.

Соли, образованные сильной кислотой и сильным основанием:

NaOH+HCl=NaCl+H2O

Такие соли гидролизу не подвергаются и их водные растворы имеют нейтральную среду.

Соли, образованные слабой кислотой, но сильным основанием:

H2CO3 + 2 NaOH = Na2СO3 + 2 H2O

В водных растворах таких солей с H2Oбудут взаимодействовать анионы слабой кислоты, которые образуются при диссоциации соли:

Na2СO3®2Na++CO32−

Эти анионы будут присоединять к себе ионы Н+, отщепившиеся от молекул H2O, в результате этого образуется слабый электролит HСO3−- гидрокарбонат-анион, а в растворе станут накапливаться ионы ОН−, которые будут сообщать раствору такой соли щелочную реакцию.

14. Глицерин многоатомный спирт состав молекулы физические хим. Физические свойства многоатомных спиртов:

1) важнейшие представители многоатомных спиртов – это этиленгликоль и глицерин;

2) это бесцветные сиропообразные жидкости сладковатого вкуса;

3) они хорошо растворимы в воде;

4) эти свойства присущи и другим многоатомным спиртам, например этиленгликоль ядовит.

Химические свойства многоатомных спиртов.

1. Как вещества, которые содержат гидроксильные группы, многоатомные спирты имеют сходные свойства с одноатомными спиртами.

2. При действии галогеноводородных кислот на спирты происходит замещение гидроксильной группы:

СН2ОН-СН2ОН + Н СI -> СН2ОН-СН2СI + Н2О.

Глицерин — бесцветная, вязкая, очень гигроскопичная жидкость, смешивается с водой в любых пропорциях. Сладкий на вкус, отчего и получил своё название.В соединении с пропиленгликолем становится менее текучим при понижении температуры до близкой к нулю градусам Цельсия.

Область применения глицерина разнообразна: пищевая промышленность, табачное производство, электронные сигареты, медицинская промышленность, производство моющих и косметических средств, сельское хозяйство, текстильная, бумажная и кожевенная отрасли промышленности, производство пластмасс, лакокрасочная промышленность, электротехника и радиотехника (в качестве флюса при пайке).

Способы получения и применения многоатомных спиртов: 1) подобно одноатомным спиртам, многоатомные спирты могут быть получены из соответствующих углеводородов через их галогенопроизводные; 2) наиболее употребительный многоатомный спирт – глицерин, он получается расщеплением жиров, а в настоящее время все больше синтетическим способом из пропилена, который образуется при крекинге нефтепродуктов.

15. Глюкоза представители моносахариды химическое. Глюкоза (C6H12O6), или виноградный сахар, или декстроза встречается в соке многих фруктов и ягод, в том числе и винограда, отчего и произошло название этого вида сахара.

Бесцветное кристаллическое вещество сладкого вкуса, растворимое в воде и органических растворителях, растворимо в реактиве Швейцера: аммиачном растворе гидроксида меди — Cu(NH3)4(OH)2, в концентрированном растворе хлорида цинка и концентрированном растворе серной кислоты.

Глюкоза – бесцветное кристаллическое вещество, хорошо растворимое в воде, сладкое на вкус (лат. «глюкос» – сладкий):

1) она встречается почти во всех органах растения: в плодах, корнях, листьях, цветах;

2) особенно много глюкозы в соке винограда и спелых фруктах, ягодах;

3) глюкоза есть в животных организмах;

4) в крови человека ее содержится примерно 0,1 %.

Особенности строения глюкозы

1. Состав глюкозы выражается формулой: С6Н12O6, она принадлежит к многоатомным спиртам.

2. Если раствор этого вещества прилить к свежеосажденному гидроксиду меди (II), образуется ярко-синий раствор, как в случае глицерина.

Опыт подтверждает принадлежность глюкозы к многоатомным спиртам.

3. Существует сложный эфир глюкозы, в молекуле которого пять остатков уксусной кислоты. Из этого следует, что в молекуле углевода пять гидроксильных групп. Этот факт объясняет, почему глюкоза хорошо растворяется в воде и имеет сладкий вкус.

Если раствор глюкозы нагреть с аммиачным раствором оксида серебра (I), то получится характерное «серебряное зеркало».

Шестой атом кислорода в молекуле вещества входит в состав альдегидной группы.

4. Чтобы составить полное представление о строении глюкозы, надо знать, как построен скелет молекулы. Поскольку все шесть атомов кислорода входят в состав функциональных групп, следовательно, атомы углерода, образующие скелет, соединены друг с другом непосредственно.

5. Цепь атомов углерода прямая, а не разветвленная.

6. Альдегидная группа может находиться только в конце неразветвленной углеродной цепи, и гидроксильные группы могут быть устойчивы, находясь лишь у разных атомов углерода.

7. Глюкоза одновременно и альдегид, и многоатомный спирт: она альдегидоспирт..

16.Диеновые углеводороды, их химическоестроение, свойства, получение системы Диены — органические соединения, содержащие две двойных связи углерод-углерод. В зависимости от взаимного расположения двойных связей диены подразделяются на три группы: сопряженные диены, в которых двойные связи разделены одинарной (1,3-диены), аллены с

кумулированными двойными связями (1,2-диены) и диены с изолированными двойными связями, в которых двойные связи разделены несколькими одинарными.
Низшие диены - бесцветные легкокипящие жидкости (температуры кипения изопрена - 34 °C, 2,2-диметил-1,3-бутадиена — 68.78 °C, 1,3- циклопентадиена — 41.5 °C).

Диеновые углеводороды различаются расположением двойных связей, такое расположение вследствие эффектов сопряжения связей сказывается на их реакционной способности. Существуют три класса диенов:
Аллены — диены с кумулированными связями, замещённые производные пропадиена-1,2 H2C=C=CH2
Сопряжённые диены или 1,3-диены — замещённые производные бутадиена-1,3 CH2=CH–CH=CH2
Изолированные диены, в которых двойные связи располагаются через две и более простых связи С–С
Диеновые углеводороды легко полимеризуются. Реакция полимеризации диеновых углеводородов лежит в основе синтеза каучука. Вступают в реакции присоединения (гидрирование, галогенирование, гидрогалогенирование.
Натуральный каучук представляет собой полимер изопрена, который в большинстве своем содержится в млечном соке гевеи и многих других растений. Основными физическими и химическими свойствами этого эластомера является его растворимость в углеводородах и их производных, нерастворимость в воде и спиртах. При комнатной температуре, как правило, природный каучук присоединяет кислород, вследствие чего происходит «старение» материла, в связи с чем, уменьшается и его эластичность и прочность.
Первым синтетическим каучуком, имевшим промышленное значение, был полибутадиеновый (дивиниловый) каучук, производившийся синтезом по методу С. В. Лебедева (анионная полимеризация жидкого бутадиена в присутствии натрия), однако из-за невысоких механических качеств нашёл ограниченное применение.
Основные типы синтетических каучуков:
Изопреновый
Бутадиеновый каучук
Бутадиен-метилстирольный каучук
Бутилкаучук (изобутилен-изопреновый сополимер) Этилен-пропиленовый (этилен-пропиленовый сополимер) Бутадиен-нитрильный (бутадиен-акрилонитрильный сополимер) Хлоропреновый,

17. Дисперсные системы. Коллоидно-дисперсные системы

В природе и технике часто встречаются дисперсные системы, в которых одно вещество равномерно распределено в виде частиц внутри другого вещества.

В дисперсных системах различают дисперсную фазу — мелкораздробленное вещество идисперсионную среду — однородное вещество, в котором распределена дисперсная фаза. Например, в мутной воде, содержащей глину, дисперсной фазой являются твердые частички глины, а дисперсионной средой — вода; в тумане дисперсная фаза — частички жидкости, дисперсионная среда — воздух; в дыме дисперсная фаза —- твердые частички угля, дисперсионная среда — воздух; в молоке — дисперсная фаза — частички жира, дисперсионная среда — жидкость и т. д.

К дисперсным системам относятся обычные (истинные) растворы, коллоидные растворы, а также суспензии и эмульсии. Они отличаются друг от друга прежде всего размерами частиц, т. е. степенью дисперсности (раздробленности).

Системы с размером частиц менее 10-9 м представляют собой — истинные растворы, состоящие из молекул или ионов растворенного вещества. Их следует рассматривать как однофазную систему. Системы с размерами частиц больше 10-7 м — это грубодисперсные системы — суспензии и эмульсии.

Суспензии — это дисперсные системы, в которых дисперсной фазой является твердое вещество, а дисперсионной средой — жидкость, — причем твердое вещество практически нерастворимо в жидкости. Чтобы приготовить суспензию, надо вещество измельчить до тонкого порошка, высыпать в жидкость, в которой вещество не растворяется, и хорошо взболтать (например, взбалтывание глины в воде). Со временем частички выпадут на дно сосуда. Очевидно, чем меньше частички, тем дольше будет сохраняться суспензия.

Эмульсии — это дисперсные системы, в которых и дисперсная фаза и дисперсионная среда являются жидкостями, взаимно не смешивающихся. Из воды и масла можно приготовить эмульсию длительным встряхиванием смеси. Примером эмульсии является молоко, в котором мелкие шарики жира плавают в жидкости. Суспензии и эмульсии — двухфазные системы.

Коллоидные системы

Коллоидные растворы — это высокодисперсные двухфазные системы, состоящие из дисперсионной среды и дисперсной фазы, причем линейные размеры частиц последней лежат в пределах от 10-9 м до 10-7 м. Как видно, коллоидные растворы по размерам частиц являются промежуточными между истинными растворами и суспензиями и эмульсиями. Коллоидные частицы обычно состоят из большого числа молекул или ионов.

Суспензия — смесь веществ, где твёрдое вещество распределено в виде мельчайших частиц в жидком веществе во взвешенном состоянии. Суспензия — это грубодисперсная система с твёрдой дисперсной фазой и жидкой дисперсионной средой. Обычно частицы дисперсной фазы настолько велики (более 10 мкм), что оседают под действием силы тяжести (седиментируют). Суспензии, в которых седиментация идёт очень медленно из-за малой разницы в плотности дисперсной фазы и дисперсионной среды, иногда называют взвесями. В концентрированных суспензиях легко возникают дисперсные структуры. Типичные суспензии — пульпы, буровые промывочные жидкости, цементные растворы, эмалевые краски. Широко используются в производстве керамики. 18. Железо, положение в периодической системе, строение атома Типичные степени окисления железа +2 и +3. Степень окисления +2 проявляется за счет потери двух 4s-электронов. Степень окисления +3 соответствует также при потере еще одного Зd-электрона, при этом Зd-уровень оказывается заполненным наполовину; такие электронные конфигурации относительно устойчивы.

Физические свойства. Железо типичный металл, образует металлическую кристаллическую решетку. Железо проводит электрический ток, довольно тугоплавко, температура плавления 1539С. От большинства других металлов железо отличается способностью намагничиваться.

Химические свойства. Железо реагирует со многими неметаллами:

Образуется железная окалина смешанный оксид железа. Его формулу записывают также так: FeОFe2О3.

Реагирует с кислотами с выделением водорода:

Вступает в реакции замещения с солями металлов, расположенных правее железа в ряду напряжений:

Соединения железа. FeО основной оксид, реагирует с растворами кислот с образованием солей железа (II). Fe2О3 амфотерный оксид, реагирует также с рас творами щелочей.

гидроксиды:

Сплавы железа. Современная металлургическая промышленность производит железные сплавы разнообразного состава.

Все железные сплавы разделяются по составу и свойствам на две группы. К первой группе относятся различные сорта чугуна, ко второй различные сорта стали.

Чугун, предназначенный для переработки в сталь, называют передельным чугуном. Он содержит от 3,9 до 4,3% С, 0,31,5% Si, 1,53,5% Мn, не более 0,3% Р и не более 0,07% S. Чугун, предназначенныйдля получения отливок, называется литейным чугуном, В доменных печах выплавляются также ферросплавы, применяемые преимущественно в производстве сталей в качестве добавок. Ферросплавы имеют, по сравнению с передельным чугуном, повышенное содержание кремния (ферросилиций), марганца (ферромарганец), хрома (феррохром) и других элементов.

Общие способы получения металлов.

Металлы находятся в природе преимущественно в виде соединений. Только металлы с малой химической активностью (благородные металлы) встречаются в природе в свободном состоянии (платиновые металлы, золото, медь, серебро, ртуть). Из конструкционных металлов в достаточном количестве имеются в природе в виде соединений лишь железо, алюминий, магний. Они образуют мощные залежи месторождений относительно богатых руд. Это облегчает их добычу в больших масштабах.

Поскольку металлы в соединениях находятся в окисленном состоянии (имеют положительную степень окисления), то получение их в свободном состоянии сводится к процессу восстановления:

Этот процесс можно осуществить химическим или электрохимическим путем.

При химическом восстановлении в качестве восстановителя чаще всего применяют уголь или оксид углерода (II), а также водород, активные металлы, кремний. С помощью оксида углерода (II) получают железо (в доменном процессе), многие цветные металлы (олово, свинец, цинк и др.):

Восстановление водородом используется, например, для получения вольфрама из оксида вольфрама (VI):

19. Понятие о жесткости воды. Борьба. Жесткость воды – это совокупность свойств, обусловленных содержанием в воде катионов кальция и магния. Анионами растворимых солей кальция и магния могут быть гидрокарбонат-ионы, сульфат-ионы и хлорид-ионы. Различают временную (карбонатную) и постоянную жесткость.

Временная жесткость обусловлена содержанием в воде гидрокарбонатов кальция и магния. Временная жесткость легко устраняется кипячением:

Постоянная жесткость обусловлена наличием в воде сульфатов, хлоридов и других солей кальция и магния. Постоянную жесткость можно устранить, используя следующие способы.

а) Известково-содовый способ – к воде добавляют смесь гашеной извести и соды. При этом временная жесткость воды устраняется гашеной известью, а постоянная – содой:

б) Катионитный способ – воду пропускают через колонку, заполненную катионитом (катиониты – твердые вещества, содержащие в своем составе подвижные катионы, способные обмениваться на ионы внешней среды) На катионите задерживаются ионы кальция и магния, а в раствор переходят ионы натрия, в результате чего жесткость воды уменьшается:

Общее содержание кальция в организме человека в среднем составляет 1,9% от общей массы тела, при этом 99% всего количества приходится на долю скелета и лишь 1% содержится в остальных тканях и жидкостях организма. Суточная потребность в кальции для взрослого человека 0,45-1,2 г. Кальций участвует во всех жизненных процессах организма. Нормальная свертываемость крови происходит только в присутствии солей кальция. Кальций играет важную роль и в нервно-мышечной возбудимости организма.

20.Жиры как сложные эфиры глицерина и карбоновых кислот, их состав и свойства. Жиры, или триглицериды (где ацил – остаток карбоновой кислоты -C(O)R)— природныеорганическиесоединенияполныесложные,

эфиры глицерина и одноосновных жирных кислот; входят в класс липидов. В живых организмах выполняют структурную, энергетическую и др. функции.

В состав природных триглицеридов входят остатки насыщенных

(предельных) кислот(пальмитиновойC15H31COOH, стеариновой C17H35COOH и др.) и ненасыщенныхнепредельныхкислот() (олеиновойC17H33COOH, линолевойC17H31COOH, линоленовой

C15H29COOH и др.).

Жиры содержатся во всех растениях и животных. Они представляют собой смеси полных сложных эфиров глицерина и не имеют чётко выраженной температуры плавления.

Жидкие жиры превращают в твердые путем реакции гидрогенизации (каталитическогогидрирования). При этомводородприсоединяетсяпо двойной связи, содержащейся в углеводородном радикале молекул масел.

21.изомерия органических соединений ее виды. Различают два вида изомерии: структурную и пространственную (стереоизомерию). Структурные изомеры отличаются друг от друга порядком связи атомов в молекуле, стерео-изомеры — расположением атомов в пространстве при одинаковом порядке связей между ними.

Структурная изомерия
Изомерия углеродного скелета обусловлена различным порядком связи между атомами углерода, образующими скелет молекулы. Как уже было показано, молекулярной формуле С4Н10 соответствуют два углеводорода: н-бутан и изобутан. Для углеводорода С5Н12 возможны три изомера: пентан, изо-пентан и неопентан.

Большинство природных соединений являются индивидуальными энантиомерами, и их биологическое действие (начиная от вкуса и запаха и кончая лекарственным действием) резко отличается от свойств их оптических антиподов, полученных в лаборатории. Подобное различие в биологической активности имеет огромное значение, так как лежит в основе важнейшего свойства всех живых организмов — обмена веществ.

22.искусственные волокна на примере цнллофана и вискоза. – это химические волокна, получаемые из природных полимеров, главным образом целлюлозы, получаемой из дерева и соломы. Ткани из искусственных волокон, также как и из натуральных, обладают высокими гигиеническими и иными качествами.

Вискозные ткани изготавливаются исходя из их назначения. Им можно придать внешний вид хлопка, льна, шерсти или шелка. Кроме того, вискоза применяется для прядения вискозных неволокнистых изделий (целлюлозной пленки, целлофана), а также для производства искусственной кожи (кирзы). Вискоза обладает некоторыми достоинствами по сравнению с традиционными натуральными тканями. Так, вискоза лучше впитывает влагу, чем хлопок. Изделия из вискозы обладают приятным шелковистым блеском, при этом легко окрашиваются и обладают высокой светостойкостью (в отличие от шелка). Из недостатков необходимо назвать сильную сминаемость, высокую степень усадки и невысокую прочность (особенно во влажном состоянии). Поэтому стирать вискозу необходимо в щадящем режиме. Отжимать лучше вручную и не сильно, либо вообще не отжимать, а сразу вешать сушиться. Гладить ее рекомендуется в таком же режиме, как и шелк.

Вискозное волокно занимает первое место среди химических волокон по объему производства. Вискоза производится из жидких растворов природной целлюлозы: из древесины ели, сосны, стеблей некоторых растений, из отходов переработки хлопкового волокна. Остатки еловой щепы и хлопкового пуха обрабатывают раствором щелочи (едкий натр), получают щелочную целлюлозу, которую затем обрабатывают сероуглеродом и полученный растров продавливают через фильеры — пластины с мельчайшими отверстиями — получают струйки материала, которые затвердевают и образуют элементарные нити. Ученые России предвидели блестящую будущность вискозного волокна.

Свойства

Вискозное волокно является самым универсальным из химических волокон, оно приближено к хлопковому. Ткань из вискозы на ощупь мягкая и приятная. Она образует красивые складки. Волокно имеет рыхлую структуру, напоминает шелк по внешнему виду. Вискозу также отличает крайне высокая гигроскопичность. Вискоза впитывает в два раза больше влаги, чем, например, хлопок. Ткань из вискозы очень легко окрашивается в самые яркие цвета. При увлажнении чистая вискоза становится менее прочной, однако, эта проблема полностью решается вплетением специальных укрепляющих волокон. Плотность нетканого полотна из вискозы может варьироваться от 1,53 г/смі до 4,5 г/смі. Эластичность вискозы не превышает 2−3%. Вискозная нетканка не теряет своих свойств при нагревании вплоть до 150 °C. Вискозное волокно очень хорошо сочетается с другими волокнами, что позволяет улучшать различные свойства материи: крепкость, мягкость, гигроскопичность. Вискоза не электризуется. «Зеленые» свойства

23.кетоны состав свойства способы получения и применения: Способы получения кетонов

Кетоны могут быть получены окислением алкенов (кислородом в присутствии солей палладия и озоном), спиртов и гидратацией алкинов. Промышленное значение имеет метод гидроформилирования алкенов (оксосинтез).

1. Из спиртов. Дегидрированием спиртов получают многие альдегиды и кетоны, но в настоящее время процесс сохранил свое значение только для получения формальдегида (катализатор Cu). Промышленным способом получения является окисление спиртов. В качестве окислителей применяют K2Cr2O7/разб. H2SO4, Cr2O3/разб. H2SO4. Окислением первичных спиртов получают альдегиды, вторичных – кетоны.


Поделиться с друзьями:

Историки об Елизавете Петровне: Елизавета попала между двумя встречными культурными течениями, воспитывалась среди новых европейских веяний и преданий...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.068 с.