Клиническая фармакология неингаляционных анестетиков — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Клиническая фармакология неингаляционных анестетиков

2022-12-30 30
Клиническая фармакология неингаляционных анестетиков 0.00 из 5.00 0 оценок
Заказать работу

Клиническая фармакология неингаляционных анестетиков

Барбитураты

Механизм действия

Барбитураты угнетают ретикулярную активирую­щую систему — разветвленную полисинаптичес-кую сеть нейронов и регуляторных центров ство­ла мозга. Ретикулярная активирующая система оказывает влияние на многие жизненно важные функции, в том числе и на сознание. В клиничес­ких концентрациях барбитураты в большей степе­ни влияют на функцию синапсов, а не на аксо-нальное проведение. Барбитураты подавляют эффекты возбуждающихнейротрансмиттеров (например, ацетилхолина) и стимулируют эффек­ты ингибирующих нейротрансмиттеров (напри­мер, гамма-аминомасляной кислоты). Специфи­ческие механизмы включают влияние на выделение нейротрансмиттера (пресинаптичес-кое) и стереоселективное взаимодействие с рецеп­торами (постсинаптическое).

Влияние структуры на активность

Барбитураты — производные барбитуровой кислоты (рис. 8-3). Замещение атомов водорода различными радикалами в положении C5 влияет на гипнотичес­кую мощность и противосудорожное действие. На­пример, длинная разветвленная цепь обеспечивает большую мощность, чем короткая неразветвленная. Фениловая группа обеспечивает противосудорож-ный эффект фенобарбитала, в то время как метило­вая в метогекситале не оказывает такого влияния. Замещение атома кислорода в положении C2 ато­мом серы превращает оксибарбитураты в тиобарби-тураты, что улучшает их растворимость в жирах. В результате фармакологический эффект тиопента-ла и тиамилала более мощный, быстрый и кратков­ременный по сравнению с эффектом пентобарбита-ла и секобарбитала. Кратковременность действия метогекситала обеспечивается метиловой группой в положении N1. Натриевые соли барбитуратов водо­растворимы, но имеют выраженную щелочную ре­акцию (у 2,5 % раствора тиопентала рН > 10) и от­носительно нестабильны (срок хранения 2,5 % раствора тиопентала составляет 2 нед). Концентра­ции рекомендованных выше анестетиков неоправданно увеличивают риск возникновения боли при введении и тромбоза вен.

Фармакокинетика

А. Абсорбция. В клинической анестезиологии барбитураты чаще всего вводят через катетер в ве­ну для индукции анестезии у взрослых и детей. Исключения — ректальное введение тиопентала или метогекситала для индукции анестезии у де­тей, а также в/м применение пентобарбитала или секобарбитала у больных всех возрастных групп.

Рис. 8-3. Все барбитураты являются производными барбитуровой кислоты. Химически барбитураты отличаются радикалами в позициях C2, C5 и N1

Б. Распределение. Длительность действия препаратов, хорошо растворимых в жирах (тио­пентала, тиамилала и метогекситала), определяет­ся перераспределением, а не метаболизмом или элиминацией. Например, несмотря на большую степень связанности препарата с белками (80 %), поглощение тиопентала головным мозгом благода­ря высокой жирорастворимости и большой неио­низированной фракции (60 %) достигает максиму­ма уже через 30 с после введения. Если объем центральной камеры уменьшен (например, при ги-поволемическом шоке) или снижена концентра­ция альбумина в сыворотке (например, при тяже­лом заболевании печени), или увеличена неионизированная фракция (например, при аци­дозе), то при той же дозе концентрация препарата в сердце и головном мозге увеличится. Перерасп­ределение препарата в периферическую камеру (главным образом в мышечную группу) приводит к уменьшению концентрации препарата, которая через 20-30 мин после введения составляет 10 % от пиковой (рис. 8-4). Обрисованный фармакокинетический профиль соответствует клиническому опыту — утрата сознания наступает через 30 с и длится 20 мин. Доза тиопентала для индукции за­висит от массы тела и возраста. В преклонном воз­расте дозу следует снизить, что является отраже­нием более высокой пиковой концентрации вследствие замедленного распределения. В проти­воположность быстрому начальному распределе­нию, где период полусуществования составляет несколько минут, период полусуществованиятио­пентала в фазе элиминации длится от 3 до 12 ч. Распределение тиамилала и метогекситала проте­кает аналогично распределению тиопентала, в то время как у барбитуратов с меньшей растворимос­тью в жирах период полусуществования и продол­жительность действия намного больше. Повторное введение барбитуратов приводит к насыщению пе­риферических камер, перераспределения не возни­кает и продолжительность действия становится более зависимой от элиминации.

Рис. 8-4. Распределение тиопентала из плазмы в группу хорошо васкуляризованных тканей (ГХВТ), в мышечную группу (МГ) и, наконец, в жировую группу (ЖГ). (Из: Price H. L. et al. The uptake of thiopental by body tissues and its relation to the duration of narcosis.Clin.Pharmacol.Ther., 1960; 1: 16. Воспроизведено с изменениями, с раз­решения.)

В. Биотрансформация. Биотрансформация барбитуратов обеспечивается окислением в печени до неактивных водорастворимых метаболитов. Вследствие высокой печеночной экстракции пече­ночный клиренс метогекситала в 3-4 раза превы­шает таковой для тиопентала и тиамилала. Хотя перераспределение обеспечивает пробуждение че­рез одинаковый промежуток после однократного введения любого из этих трех жирорастворимых барбитуратов, полное восстановление психомо­торных функций быстрее происходит при исполь­зовании метогекситала, метаболизм которого про­текает интенсивнее.

Г. Экскреция. Значительная степень связыва­ния с белками затрудняет проникновение барбиту­ратов через гломерулярный фильтр, тогда как высокая жирорастворимость увеличивает реаб-сорбцию в почечных канальцах. За исключением препаратов, меньше связанных с белками и слабее растворимых в жирах (например, фенобарбитал), почки выделяют только водорастворимые конеч­ные продукты печеночного метаболизма. Метогек-ситал выводится с фекалиями.

Влияние на организм

А. Сердечно-сосудистая система. Индукционные дозы барбитуратов вызывают снижение артери­ального давления и увеличение ЧСС. Угнетение сосудодвигательного центра продолговатого мозга вызывает расширение емкостных периферических сосудов, что приводит к депонированию крови и снижает венозный возврат к правому предсердию. Тахикардия обусловлена центральной стимуляци­ей блуждающего нерва. Барорецепторные механизмы компенсаторно увеличивают ЧСС и сокра­тимость миокарда, что нередко позволяет поддер­жать сердечный выброс. Активация симпатичес­кой нервной системы вызывает сужение сосудов, что увеличивает ОПСС. В отсутствие полноцен­ных барорефлексов (например, при гиповолемии, сердечной недостаточности, при использовании β-адреноблокаторов) сердечный выброс и артери­альное давление могут катастрофически снизить­ся вследствие некомпенсированного депонирования крови и выраженной депрессии миокарда. Нелечен­ная или плохо леченная артериальная гипертония значительно повышает риск скачков артериально­го давления во время индукции анестезии. Таким образом, влияние барбитуратов на кровообраще­ние значительно варьируется в зависимости от объема циркулирующей крови, исходного тонуса вегетативной нервной системы и заболеваний сер­дечно-сосудистой системы. Медленное введение препарата и полноценная нагрузка жидкостью пе­ред операцией в большинстве случаев ослабляют неблагоприятные реакции кровообращения.

Б. Система дыхания. Барбитураты угнетают ды­хательный центр продолговатого мозга, что подав­ляет компенсаторные реакции вентиляции на ги­поксию и гиперкапнию. Индукционная доза барбитурата вызывает апноэ. Во время пробужде­ния дыхательный объем и частота дыхания остают­ся сниженными. Барбитураты не полностью угнета­ют ноцицептивные рефлексы с дыхательных путей, манипуляции на которых могут вызвать бронхо-спазм при бронхиальной астме или ларингоспазм при поверхностной анестезии. После применения метогекситала частота развития ларингоспазма и икоты выше, чем после использования тиопентала.

В. Центральная нервная система. Барбитураты вызывают сужение сосудов головного мозга, что снижает мозговой кровоток и внутричерепное дав­ление. Внутричерепное давление снижается силь­нее, чем артериальное, поэтому церебральное перфузионное давление (ЦПД) обычно повышается (Церебральное перфузионное давление = Цереб­ральное артериальное давление — Внутричерепное давление [или церебральное венозное давление]). Снижение мозгового кровотока не носит угрожаю­щего характера, потому что барбитураты вызыва­ют еще более значительное уменьшение потребления кислорода головным мозгом (до 50 % от физиологических значений). Изменения функцио­нальной активности мозга и потребления кислоро­да отражаются на ЭЭГ, на которой прослеживается эволюция от низковольтажной быстрой активнос­ти после введения низких доз до высоковольтаж-ной медленной активности и "биоэлектрического молчания" после введения очень высоких доз (в/в струйное введение 15-40 мг/кг тиопентала, сменяе­мое постоянной инфузией в дозе 0,5 мг/(кг х мин)). Уменьшение потребления кислорода головным моз­гом под воздействием барбитуратов обеспечивает некоторую степень защиты мозга от преходящей очаговой ишемии (например, при эмболии мозговой артерии), но не от глобальной ишемии (например, при остановке кровообращения). Доза барбитура­тов, позволяющая добиться депрессии ЭЭГ, замед­ляет пробуждение, вызывает необходимость в про­дленной ИВЛ и в инотропной поддержке.

Степень угнетения ЦНС под воздействием бар­битуратов в зависимости от дозы варьируется от легкой седации до утраты сознания (табл. 8-2). В отличие от наркотиков барбитураты не способ­ны селективно воздействовать на восприятие боли. Более того, барбитураты иногда дают антианалге-тический эффект, снижая болевой порог. В неко­торых случаях при использовании низких доз воз­никают возбуждение и дезориентация, что может вызвать вполне понятную растерянность анестезио­лога, ожидавшего седативного эффекта. Барбиту­раты не вызывают миорелаксации, а некоторые из них индуцируют непроизвольные сокращения ске­летных мышц (например, метогекситал). Относи-

ТАБЛИЦА 8-2. Показания к применению и дозы барбитуратов

Препарат Показания к применению Путь введения Концентрация, % Доза
Тиопентал, Индукция В/в 2,5 3-6 мг/кг
Тиамилал Седация В/в 2,5 0,5-1,5 мг/кг
Метогекситал Индукция В/в 1 1-2 мг/кг
  Седация В/в 1 0,2-0,4 мг/кг
  Индукция Ректально (у детей) 10 25 мг/кг
Секобарбитал, Премедикация Внутрь 5 2-4 мг/кг1
Пентобарбитал   В/м   2-4 мг/кг1
    Ректальный суппозиторий   3 мг/кг

1 Максимальная доза 150 мг.

тельно низкие дозы тиопентала (50-100 мг в/в), как правило, быстро устраняют большие эпилеп­тические припадки. К сожалению, быстро развива­ются острая толерантность и физическая зависи­мость от седативного эффекта барбитуратов.

Г. Почки. Барбитураты снижают почечный кровоток и скорость клубочковой фильтрации пропорционально уменьшению артериального давления.

Д. Печень. Печеночный кровоток снижается. Хроническое употребление барбитуратов оказыва­ет двоякое действие на биотрансформацию в пече­ни. Индукция печеночных ферментов, обусловлен­ная барбитуратами, стимулирует метаболизм одних лекарственных средств (например, дигоксина), в то время как влияние на цитохром Р450 препятствует биотрансформации других (например, трицикли-ческих антидепрессантов). Индукция синтетазыаминолевуленовой кислоты стимулирует образо­вание порфирина (промежуточного метаболита в синтезе гема), что у лиц группы риска может спро­воцировать приступ острой интермиттирующейпорфирии или смешанной порфирии.

E. Иммунная система. Анафилактические и ана-филактоидные реакции возникают редко. Invitro тиобарбитураты высвобождают гистамин из туч­ных клеток, тогда как оксибарбитураты этого не де­лают. Поэтому при бронхиальной астме и аллергии некоторые анестезиологи предпочитают использо­вать метогекситал, а не тиопентал или тиамилал.

Бензодиазепины

Механизм действия

Бензодиазепины взаимодействуют со специфичес­кими рецепторами ЦНС, особенно в коре больших полушарий. Связывание бензодиазепина с рецеп­тором усиливает ингибирующие эффекты различ­ныхнейротрансмиттеров. Например, связывание бензодиазепина с рецептором облегчает связыва­ние гамма-аминомасляной кислоты со специфи­ческим рецептором, что в свою очередь повышает проницаемость мембраны для ионов хлора. Это из­меняет поляризацию мембраны, что ингибирует функцию нейрона. Флумазенил (имидазолбензо-диазепин) является специфическим антагонистом бензодиазепиновых рецепторов, поэтому он хоро­шо устраняет большинство центральных эффек­тов бензодиазепинов (гл. 15).

Фармакокинетика

А. Абсорбция. Бензодиазепины назначают внутрь, в/м или в/в для седации или индукции анестезии (табл. 8-3). Диазепам и лоразепам хорошо всасыва­ются из ЖКТ, концентрация в плазме достигает пика через 1 и 2 ч соответственно. Хотя назначение мидазолама внутрь еще не получило одобрения Управления по контролю за лекарственными пре­паратами и пищевыми продуктами США, этот путь введения очень популярен для премедикации у детей.

Внутримышечная инъекция диазепама болез­ненна, абсорбция препарата непредсказуема. mи-дазолам и лоразепам, наоборот, хорошо абсорбиру­ются после в/м введения, концентрация в плазме достигает пика через 30 и 90 мин соответственно.

Индукцию анестезии осуществляют путем в/в инъекции.

Б. Распределение. Диазепам представляет со­бой исключительно жирорастворимый препарат, он легко проникает через гематоэнцефалический барьер. Хотя при низком рН мидазолам водора­створим, при физиологическом рН имидазольное кольцо замкнуто, что свидетельствует о преиму­щественной жирорастворимости препарата. Уме­реннаяжирорастворимостьлоразепама обуслов­ливает более медленное поглощение препарата головным мозгом и отсроченное начало действия. Для всех бензодиазепинов характерно быстрое перераспределение (период полусуществования в фазе начального распределения составляет 3-10 мин), которое, аналогично барбитуратам, со­впадает с длительностью сна. Мидазолам часто применяют для индукции анестезии, несмотря на то что ни один из бензодиазепинов не имеет свой­ственного барбитуратам сочетания быстрого нача­ла и короткой продолжительности действия. Все три бензодиазепина в значительной степени свя­зываются с белками (90-98 %).

В. Биотрансформация. В печени бензодиазе-пины образуют водорастворимые конъюгаты с глюкуроновой кислотой. Метаболиты диазепама, образовавшиеся в ходе реакций І фазы, фармако­логически активны. Медленная печеночная экстракция и большой объем распределения объясняют длительный пе­риод полусуществованиядиазепама в фазе элими­нации (30 ч). Хотя отношение печеночной экстрак­ции для лоразепама тоже невелико, но меньшаяжирорастворимость ограничивает объем распреде­ления, что укорачивает период полусуществова­ния в фазе элиминации (15 ч). Тем не менее лора-зепам часто действует очень долго вследствие чрезвычайно высокой аффинности к рецепторам.

ТАБЛИЦА 8-3. Показания к применению и дозы бензодиазепинов

Препарат Показания к применению Путь введения Доза
Диазепам Премедикация Внутрь 0,2-0,5 мг/кг1
  Седация В/в 0,04-0,2 мг/кг
  Индукция В/в 0,3-0,6 мг/кг
Мидазолам (дормикум) Премедикация В/м 0,07-0,15 мг/кг
  Седация В/в 0,01-0,1 мг/кг
  Индукция В/в 0,1-0,4 мг/кг
Лоразепам Премедикация Внутрь 0,05 мг/кг2
  Седация В/м 0,03-0,05 мг/кг2
  Индукция В/в 0,03-0,04 мг/кг2

1 Максимальная доза 15 мг.

2He рекомендовано применять у детей.

Напротив, объем распределения мидазолама ана­логичен таковому диазепама, но его период полу­существования в фазе элиминации самый корот­кий в этой группе (2 ч), что обусловлено высоким отношением печеночной экстракции.

Г. Экскреция. Конечные продукты метаболиз­ма бензодиазепинов выделяются в основном с мо­чой. Энтерогепатическая циркуляция вызывает вторичный пик концентрации диазепама в плазме через 6-12 ч после введения.

Влияние на организм

А. Сердечно-сосудистая система. Даже в индук­ционных дозах бензодиазепины практически не влияют на кровообращение. Незначительно сни­жаются артериальное давление, сердечный выброс и ОПСС, в то время как ЧСС иногда возрастает. Мидазолам снижает артериальное давление и ОПСС в большей степени, чем диазепам.

Б. Система дыхания. Бензодиазепины угнетают реакцию вентиляции на гиперкапнию. Если бензо­диазепины применять внутрь или внутримышечно, а также не сочетать их с другими депрессантами, то значительного угнетения дыхания не возникает. После введения барбитуратов риск развития апноэ выше, тем не менее даже небольшие дозы диазепама и мидазолама, введенные внутривенно, могут вы­звать остановку дыхания. Крутой подъем кривой "доза-эффект", слегка отсроченное начало дей­ствия (по сравнению с тиопенталом или диазепамом) и высокая мощность обусловливают необходимость тщательного дробного введения мидазолама во избе­жание передозировки и развития апноэ. При внутри­венном введении бензодиазепинов следует проводить мониторинг вентиляции, необходимо также иметь наготове реанимационное оборудование.

В. Центральная нервная система. Бензодиазе­пины снижают потребление кислорода головным мозгом, мозговой кровоток и внутричерепное дав­ление, но в меньшей степени, чем барбитураты. Бензодиазепины очень эффективны в профилакти­ке и лечении больших судорожных припадков. Ce-дативные дозы препаратов при приеме внутрь час­то вызывают антероградную амнезию — полезное свойство для премедикации.Бензодиазепины вы­зывают умереннуюмиорелаксацию, действуя на уровне спинного мозга (а не на уровне нервно-мы­шечного соединения). Низкие дозы устраняют тре­вожность, вызывают амнезию и седативный эф­фект, в то время как индукционные дозы — ступор и утрату сознания. По сравнению с тиопенталомбен­зодиазепины вызывают менее глубокую утрату со­знания и действуют дольше. Бензодиазепины не дают непосредственного аналгетического эффекта.

Опиоиды Механизм действия

Опиоиды связываются со специфическими рецеп­торами, которые широко представлены в ЦНС и в других органах (например, в ЖKT.- Примеч. пер.). Выделяют четыре главных типа опиатных ре­цепторов (табл. 8-4): мю (μ, подтипы μ-1 и μ-2), каппа (х), дельта (δ)и сигма (σ).

ТАБЛИЦА 8-4. Классификация опиатных рецепторов

Рецептор Клинический эффект Агонист
Мю Супраспинальная аналгезия (μ-1) Морфин
  Депрессия дыхания (μ-2) Мет-энкефалин1
  Физическая зависимость β-Эндорфин1
  Мышечная ригидность  
Каппа Седация Морфин
  Спинальная аналгезия НальбуфинБуторфанол Динорфин1
Дельта Аналгезия Лей-энкефалин1
  Изменение поведения β-Эндорфин1
  Эпилептогенный  
Сигма Дисфория Пентазоцин
  Галлюцинации Налорфин
  Стимуляция дыхания Кетамин?

Примечание. Взаимоотношение между рецептором, агонис-том и клиническим эффектом на самом деле сложнее, чем показано в таблице. Например, пентазоцин является анта­гонистом μ-рецепторов, частичным агонистом χ-рецепторов и чистым агонистом σ-рецепторов. 1 Эндогенный опиоид.

Опиоиды вызывают незначительнуюседацию, но в клинике их применя­ют благодаря мощному аналгетическому эффекту. Фармакодинамические свойства опиоидов зависят от взаимодействия со специфическим рецептором, от степени сродства к рецептору и, наконец, от ха­рактера взаимодействия (есть активация или нет). Хотя с опиатными рецепторами связываются как агонисты, так и антагонисты, активировать рецеп­торы способны только агонисты. Агонисты-антаго-нисты (например, нальбуфин, налорфин, буторфа-нол и пентазоцин) являются препаратами, которые не одинаково влияют на разные типы опиатных ре­цепторов. "Чистый антагонист" опиатных рецепто­ров налоксон обсуждается в гл. 15.

Эндорфины, энкефалины и динорфины — это эндогенные пептиды, которые связываются с опи­атными рецепторами. Отличаются эти три семей­ства эндогенных опиоидов белками-предшествен­никами, анатомической локализацией и сродством к рецепторам.

Активация опиатного рецептора угнетает преси-наптическое высвобождение и постсинаптическое взаимодействие возбуждающих нейротрансмитте-ров (например, ацетилхолина и вещества P) ноци-цептивных нейронов. На клеточном уровне этот эф­фект проявляется изменением проницаемости мембраны для ионов калия и кальция. При интрате-кальном или эпидуральном введении опиоидов пере­дача болевого импульса блокируется на уровне зад­них рогов спинного мозга. В опиоидной аналгезии также играет роль модуляция нисходящих ингиби-рующих импульсов, поступающих из вокругводо-проводного серого вещества через ядро большого шва в задний рог спинного мозга. Опиоидыопосре-дуют большинство эффектов в ЦНС. Кроме того, опиатные рецепторы были обнаружены в соматичес­ких и симпатических периферических нервах.

Фармакокинетика

А. Абсорбция. После в/м инъекции абсорбция морфина и меперидина протекает быстро и полнос­тью, через 20-60 мин концентрация препаратов в плазме достигает своего пика. Фентанила цитрат полноценно всасывается через слизистую оболоч­ку рта (фентаниловый "леденец"), позволяя до­биться эффективной аналгезии и седации.

Низкая молекулярная масса и высокая жирора-створимость позволяют применять фентанилчрес-кожно (фентаниловый пластырь). Абсорбция фен-танила определяется главным образом площадью поверхности пластыря, но может зависеть и от со­стояния кожи (например, от кровотока). Установ­ка лекарственного резервуара в верхние слои кожи задерживает поступление фентанила в кровоток на несколько часов. Концентрация фентанила до­стигает плато через 14-24 ч после наложения плас­тыря и остается постоянной в течение 72 ч. Если пластырь слишком долго находится на коже, то после его удаления снижение концентрации фен­танила в сыворотке занимает много времени.

Б. Распределение. В табл. 8-5 представлены физические свойства опиоидов, которые влияют на их распределение и поглощение. Период полу­существования в фазе распределения у всех опиои­дов очень короткий (5-20 мин). Из-за низкой ра­створимости в жирах морфин медленно проникает через гематоэнцефалический барьер, поэтому на­чало его действия отсрочено, а длительность эф­фекта велика. Фентанил и суфентанил, наоборот, хорошо растворимы в жирах, действуют быстро и кратковременно. Интересно, что при струйном введении действие алфентанила по сравнению с действием фентанила наступает быстрее и длит­ся меньше времени, несмотря на худшую раство­римость в жирах. Высокая неионизированная фрак­ция алфентанила при физиологическом рН и низкий объем распределения увеличивают количество пре­парата, доступного для связывания в головном моз­ге. При введении низких доз опиоидов окончание эффекта обусловлено перераспределением, при введении высоких доз — биотрансформацией.

В. Биотрансформация. Биотрансформациясовременныхопиоидов происходит главным обра­зом в печени. Опиоиды имеют высокий уровень печеночной экстракции, поэтому их клиренс зави­сит от печеночного кровотока. Короткий период полусуществованияалфентанила в фазе элимина­ции (1,5ч) обусловлен низким объемом распре­деления. Морфин вступает во взаимодействие с глюкуроновой кислотой, образуя морфин-3-глю-курониды и морфин-6-глюкурониды. Меперидин подвергается N-метилированию, в результате чего образуется нормеперидин, активный метаболит, который способен вызывать судороги. Конечные продукты метаболизма фентанила, суфентанила и алфентанила неактивны.

Уникальная эфирная структура ремифентанила, нового опиоида ультракороткого действия, обуслов­ливает быстрый гидролиз препарата неспецифичес­кимиэстеразами в крови и тканях (рис. 8-6). Био­трансформация происходит так быстро и так полно, что длительность инфузииремифентанила практи­чески не влияет на скорость пробуждения (рис. 8-7). Отсутствие кумуляции препарата при неоднократ­ном струйном введении и после длительной инфузии отличает ремифентанил от других опиоидов. Внепе-ченочный гидролиз делает безопасным применение ремифентанила при болезнях печени и почек.

Г. Экскреция. Конечные продукты биотранс­формации морфина и меперидина выделяются в ос­новном почками, менее 10 % препарата подвергают­ся экскреции с желчью. Так как 5-10 % морфина выделяются через почки в неизмененном виде, то почечная недостаточность пролонгирует действие морфина. Накопление метаболитов морфина (мор-фин-3-глюкуронид и морфин-6-глюкуронид) при по­чечной недостаточности вызывает анестезию и депрессию дыхания, которые длятся несколько дней. Морфин-6-глюкуронид - это более мощный и дольше действующий опиоид, чем морфин. Точно также при почечной недостаточности увеличивает­ся риск развития токсических реакций при накопле­нии нормеперидина. Нормеперидин вызывает мио-клоническую активность и судороги, которые не устраняются введением налоксона. Поздний вто­ричный пик концентрации фентанила в сыворотке возникает через 4 ч после последнего введения фен­танила; он обусловлен энтерогепатической цирку­ляцией или мобилизацией препарата издепо. Мета­болиты суфентанила выделяются с мочой и желчью.

Влияние на организм

А. Сердечно-сосудистая система. Опиоиды не оказывают серьезного влияния на кровообраще­ние. Меперидин увеличивает ЧСС (он структурно напоминает атропин), в то время как высокие дозы морфина, фентанила, суфентанила и алфентанила вызывают брадикардию, стимулируя блуждаю­щий нерв. За исключением меперидина, опиоиды не угнетают сократимость миокарда. Тем не менее артериальное давление часто снижается в резуль­тате брадикардии, венодилатации иугнетения симпатических рефлексов. Более того, в ряде случаев меперидин и морфин вызывают высво-бождение гистамина, что чревато снижением арте-риального давления и уменьшением ОПСС. Выс­вобождение гистамина можно нейтрализовать, если применять опиаты в виде медленной инфу­зии, поддерживать достаточный объем циркулиру­ющей крови ипредварительно назначить H1-и H2-антагонисты гистамина (гл. 15).

Опиоидная анестезия достаточно часто сопро­вождается интраоперационнойартериальнойги-пертонией, особенно при использовании морфина и меперидина. Обычно гипертония обусловлена недостаточной глубиной анестезии и ее можно уст­ранить с помощью вазодилататоров или ингаляци­онных анестетиков. Сочетанное применение опио­идов с другими анестетиками (например, с закисью азота, бензодиазепинами, барбитуратами, ингаляционными анестетиками) вызывает значительную депрессию миокарда.

 

ТАБЛИЦА 8-5. Физические характеристики опиоидов, влияющие на распределение

Препарат Неионизированная фракция Связь с белками Растворимость в жирах
Морфин ++ ++ +
Меперидин + +++ ++
Фентанил + +++ ++++
Суфентанил ++ ++++ ++++
Алфентанил ++++ ++++ +++

Примечание. Выраженность параметра:

+ — очень низкая; ++ — низкая; +++ — высокая; ++++ — очень высокая.

Б. Система дыхания. Опиоиды угнетают венти­ляцию. Существенно снижается частота дыхания. PaCO2 в покое возрастает, реакция на гиперкапнию подавлена, что приводит к смещению кривой реак­ции CO2 вниз и вправо (рис. 8-8). Эти эффекты обусловлены влиянием опиатов на дыхательные центры ствола мозга. Порог апноэ, т. е. максимальное PaCO2, при котором больной еще не начинает ды­шать самостоятельно, также возрастает, Гипоксический драйв угнетается. Способствуя высвобождению гистамина, морфин и меперидин вызывают брон-хоспазм у больных группы риска. Опиоиды (особен­но фентанил, суфентанил и алфентанил) способны вызывать ригидность грудной клетки, выражен -ностъ которой препятствует адекватной вентиляции. Ригидность грудной клетки обусловлена цент­рально опосредованным сокращением мышц, чаще возникает после введения высоких доз опиоидов и устраняется с помощью миорелаксантов. Опиоиды эффективно устраняют бронхоконстрикцию, раз­вившуюся в результате манипуляций на дыхатель­ных путях (например, при интубации трахеи).

 

 

В. Центральная нервная система. Опиоиды оказывают самое различное влияние на мозговой кровоток и внутричерепное давление. В целом опиоиды снижают потребление кислорода голов­ным мозгом, мозговой кровоток и внутричерепное давление, но в меньшей степени, чем барбитураты или бензодиазепины. Естественно, эти эффекты наблюдаются при поддержании нормокапнии с по­мощью ИВЛ. Некоторые авторы сообщают, что при опухолях мозга и черепно-мозговой травме в/в струйное введение опиоидов может вызывать не­значительное и преходящее увеличение линейной скорости мозгового кровотока и повышение внут­ричерепного давления. Так как опиоиды, помимо этого, вызывают умеренное снижение среднего ар­териального давления, то возникающее уменьше­ние церебрального перфузионного давления мо­жет быть опасным при низкой растяжимости внутричерепной системы. Однако следует учесть, что внутричерепное давление только незначитель­но увеличивается при введении опиатов, но сильно и резко повышается во время интубации при недо­статочной глубине анестезии. Влияние опиоидов на ЭЭГ незначительно, хотя высокие дозы вызыва­ют медленную дельта-волновую активность. Вы­сокие дозы фентанила в редких случаях могут вы­зывать судорожные припадки. Последний факт четко не установлен: возможно, во многих случаях за припадки принимали вызванную опиоидами выраженную мышечную ригидность.

Высокая частота проявления тошноты и рвоты обусловлена стимуляцией хеморецепторов триггерной зоны продолговатого мозга. При неодно­кратном применении возникает физическая зависи­мость от опиоидов. В отличие от барбитуратов и бензодиазепинов для устранения сознания необходимы относительно высокие дозы опиоидов (табл. 8-6). Вне зависимости от дозы опиоиды не вызыва­ют амнезии. Внутривенное применение опиоидов анестетиками. Относительная мощность фентанила, суфентанила и алфентанила относится как 1:9:1/7. более ста лет являлось основой лечения боли. В на­стоящее время эпидуральное и субдуральное введе­ние опиоидов поистине революционизировало ле­чение болевых синдромов (гл. 18).

Г. Желудочно-кишечный тракт. Опиоиды угнетают перистальтику, что замедляет опорожне­ние желудка. Опиоиды вызывают спазм сфинктера Одди, что провоцирует желчную колику. Спазм желчевыводящих путей, который может имитировать камень общего желчного протока на холангиограмме, эффективно устраняется с помощью налоксона — антагониста опиатных рецепторов.

Д. Эндокринная система. Стресс при хирурги­ческой операции увеличивает секрецию ряда гор­монов, включая катехоламины, кортизол и антиди­уретический гормон. Опиоиды блокируют выброс этих гормонов в большей степени, чем ингаляци­онные анестетики. Последнее особенно справедли­во для таких мощных опиоидов, как фентанил, су-фентанил и алфентанил. Уменьшение стрессовой реакции особенно благоприятно при ИБС.

ТАБЛИЦА 8-6. Показания к применению и дозы опиоидов

Препарат Показания к применению Путь введения Дозы1
Морфин Премедикация В/м 0,05-0,2 мг/кг
  Интраоперационная анестезия В/в 0,1-1 мг/кг
  Послеоперационная аналгезия В/м 0,05-0,2 мг/кг
    В/в 0,03-0,15 мг/кг
Меперидин Премедикация В/м 0,5-1 мг/кг
  Интраоперационная анестезия В/в 2,5-5 мг/кг
  Послеоперационная аналгезия В/м 0,5-1 мг/кг
    В/в 0,2-0,5 мг/кг
Фентанил Интраоперационная анестезия В/в 2-150 мкг/кг
  Послеоперационная аналгезия В/в 0,5-1,5 мкг/кг
Суфентанил Интраоперационная анестезия В/в 0,25-30 мкг/кг
Алфентанил Интраоперационная анестезия    
  Нагрузочная доза В/в 8-100 мкг/кг
  Поддерживающая инфузия В/в 0,5-3 мкг/(кгхмин)

1 Большой разброс дозы опиоидов отражает высокий терапевтический индекс и зависит от сочетания с другими

Кетамин

Механизм действия

Кетамин оказывает многостороннее влияние на ЦНС, включая блокаду полисинаптических реф­лексов спинного мозга и подавление эффектов воз­буждающих нейротрансмиттеров в отдельных уча­стках головного мозга. В отличие от барбитуратов, вызывающих депрессию ретикулярной активиру­ющей системы, кетамин функционально разобща­ет, или диссоциирует, таламус (который переклю­чает сенсорные импульсы из ретикулярной активирующей системы на кору больших полуша­рий) и лимбическую кору (которая вовлечена в осознание ощущений). В то время как некоторые нейроны головного мозга функционально подав­лены, другие, наоборот, находятся в состоянии то­нического возбуждения. Клинически состояние диссоциативной анестезии характеризуется тем, что больной кажется бодрствующим (он открыва­ет глаза, глотает, мышцы сокращаются), но у него отсутствует способность анализировать сенсорные стимулы и реагировать на них. Доказано существо­вание специфических кетаминовых рецепторов и их взаимодействие с опиатными рецепторами.

Фармакокинетика

А. Абсорбция. Кетамин применяют в/в или в/м (табл. 8-7). Через 10-15 мин после в/м введения концентрация кетамина в плазме достигает пико­вых значений.

Б. Распределение. Кетамин сильнее, чем тиопентал, растворяется в жирах и в меньшей степени связывается с белками; при физиологическом рН степень их ионизации одинакова. Наличие таких свойств, наряду с обусловленным действием пре­парата увеличением мозгового кровотока и сердеч­ного выброса, приводит к быстрому поглощению кетамина мозгом и последующему перераспреде­лению (период полусуществования в фазе распре­деления составляе<


Поделиться с друзьями:

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.081 с.