Обмен веществ и энергии в клетках. метаболизм. ассимиляция и диссимиляция. — КиберПедия 

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Обмен веществ и энергии в клетках. метаболизм. ассимиляция и диссимиляция.

2022-10-28 35
Обмен веществ и энергии в клетках. метаболизм. ассимиляция и диссимиляция. 0.00 из 5.00 0 оценок
Заказать работу

Обмен веществ и энергии в клетках. метаболизм. ассимиляция и диссимиляция.

Процесс обмена — основное свойство живого. В цитоплазме клеток органов и тканей постоянно идет процесс синтеза сложных высокомолекулярных соединений и одновременно с этим — их распад с выделением энергии и образованием простых низкомолекулярных веществ — углекислого газа, воды, аммиака и др.Процесс синтеза органических веществ называется ассимиляцией, или анаболизмом. В ходе ассимиляции обновляются органоиды клетки, и накапливается запас энергии. Распад структурных элементов клетки сопровождается выделением заключенной в химических связях энергии, а конечные продукты распада, вредные для организма, выводятся за пределы клетки, а затем из организма.Процесс распада органических веществ противоположен процессу ассимиляции и называется диссимиляцией, или катаболизмом. Подобного типа реакции идут с поглощением кислорода, поэтому расщепление органических веществ связано с окислением, а освободившаяся при этом энергия идет на синтез ЛТФ (аденозинтрифосфорная кислота), необходимой для ассимиляции.Таким образом, ассимиляция и диссимиляция — это две противоположные, но взаимосвязанные стороны единого процесса — обмена веществ. При нарушении ассимиляции и диссимиляции расстраивается весь обмен веществ.В организме человека непрерывно протекают водный, солевой, белковый, жировой и углеводный обмен. Непрерывный распад и окисление органических соединений возможны лишь тогда, когда количество этих веществ в клетках постоянно пополняется. Однако потребность в питательных веществах неодинакова. Большая их часть используется организмом для образования энергии. В процессе жизнедеятельности организма энергетические запасы непрерывно уменьшаются, и их пополнение идет за счет пищи.Соотношение количества энергии, поступающей с пищей, и энергии, расходуемой организмом, называется энергетическим балансом. Количество потребляемой пищи должно соответствовать энергетическим затратам человека. Метаболизм (от греч. metabole — перемена, превращение), совокупность химических реакций, протекающих в живых клетках и обеспечивающих организм веществами и энергией для его жизнедеятельности, роста, размножения

Энергетический обмен в клетке. подготовительный этап

Подготовительный этап Заключается в ферментативном расщеплении сложных органических веществ до простых: белковые молекулы — до аминокислот, жиры — до глицерина и карбоновых кислот, углеводы — до глюкозы, нуклеиновые кислоты — до нуклеотидов. Распад высокомолекулярных органических соединений осуществляется или ферментами желудочно-кишечного тракта или ферментами лизосом. Вся высвобождающаяся при этом энергия рассеивается в виде тепла. Образовавшиеся небольшие органические молекулы могут быть использованы в качестве «строительного материала» или могут подвергаться дальнейшему расщеплению.

Синтез белка в клетке.

Каждые три последовательных нуклеотида (триплета) в цепи ДНК оказались кодом: для одной из 20 аминокислот. Простой расчет показывает, что из четырех нуклеотидов можно получить 64 разных триплета, а это означает, что каждая из 20 аминокислот внесет в средней три кодирующих ее триплета. И триплеты в молекуле нуклеиновой кислоты, и аминокислотные остат­ки в молекуле белка расположены линейно, поэтому последовательность триплетов однозначно определяет после­довательность аминокислотных остатков и том самым строение белка.Чтобы расшифровать генетический код, необходимо, фигурально выражаясь, перенести код с четырехбуквенного нуклеинового алфавита (четыре вида нуклеотидов) на двадцатибуквенный белковый алфавит (20 аминокислот). Реально этот процесс осуществляется на рибосомах.Предварительно на участке ДНК, на котором закоди­рована последовательность триплетов, определяющая аминокислотную последовательность в белке (такой участок ДНК называется геном, или цистроеом), осуществляется синтез нити РНК, этой комплементарной копии данного участка ДНК, то есть гена. Комплементарное копирование достигается тем» что пары «аденин—урацил» к «гуанин—цитозин» взаимодополняют друг друга, а син­тез нити РНК, которая называется информационной РНК, или РНК-посредником, обеспечивается специальным ферментом РНК-полимеразой. Информационная РНК переходит, мигрирует иа ядра в цитоплазму н прикрепляется своим передним концом к рибосоме.К месту синтеза белка доставляются аминокислоты. Эту задачу выполняют специальные виды рибонуклеиновых кислот — транспортные РНК со сложной конфигурацией. К одному из концов такой РНК прикреплена аминокислота, точнее, аминокислотный остаток, а середина ее образует петлю, на которой имеется антикодон, то есть триплет, комплементарный триплету, кодирующему определенную аминокислоту. Транспортных РНК существует столько, сколько кодонов (триплетов),— 64, поэтому на каждую аминокислоту в среднем приходится три транспортные РНК.Когда информационная РНК прикрепится к рибосоме своим кодовом, с ним начинает взаимодействовать та транс­портная РНК, которая имеет комплементарный антикодон. Затем происходит передвижение информационной РНК на триплет вперед, и два рядом находящихся аминокислотных остатка соединяются пептидной связью. Освободившаяся от аминокислот транспортная РНК сходит со свое­го кодона одновременно с продвижением информационной РНК на триплет вперед.

Мутации. виды мутаций

Мута́ция (лат. mutatio — изменение) — стойкое (то есть такое, которое может быть унаследовано потомками данной клетки или организма) изменение генотипа, происходящее под влиянием внешней или внутренней среды. Процесс возникновения мутаций получил название мутагенеза.Генные мутации – изменение строения одного гена. Это изменение в последовательности нуклеотидов: выпадение, вставка, замена и т.п. Например, замена А на Т. Причины – нарушения при удвоении (репликации) ДНК. Примеры: серповидноклеточная анемия, фенилкетонурия. Хромосомные мутации – изменение строения хромосом: выпадение участка, удвоение участка, поворот участка на 180 градусов, перенос участка на другую (негомологичную) хромосому и т.п. Причины – нарушения при кроссинговере. Пример: синдром кошачьего крика. Геномные мутации – изменение количества хромосом. Причины – нарушения при расхождении хромосом. Цитоплазматические мутации – изменения в ДНК митохондрий и пластид. Передаются только по женской линии, т.к. митохондрии и пластиды из сперматозоидов в зиготу не попадают. Пример у растений – пестролистность. Соматические – мутации в соматических клетках (клетках тела; могут быть четырех вышеназванных видов). При половом размножении по наследству не передаются. Передаются при вегетативном размножении у растений, при почковании и фрагментации у кишечнополостных (у гидры).

Причины мутаций. мутагены

Есть много причин мутаций. Некоторые возникают спонтанно, в результате ошибок при репликации и репарации ДНК. Другие, однако, индуцируются, возникают в результате действия мутагенов или факторов окружающей среды. Вещество или воздействие называются мутагенными, если они вызывают мутации с частотами, превышающими частоты спонтанного фона. Мутагены — химические и физические факторы, вызывающие наследственные изменения — мутации. Впервые искусственные мутации получены в 1925 году Г. А. Надсеном и Г. С. Филипповым у дрожжей действием радиоактивного излучения радия; в 1927 году Г. Мёллер получил мутации у дрозофилы действием рентгеновских лучей. Способность химических веществ вызывать мутации (действием иода на дрозофилы) открыта И. А. Рапопортом. У особей мух, развившихся из этих личинок, частота мутаций оказалась в несколько раз выше, чем у контрольных насекомых.

Методы генетики человека.

Генеалогический метод состоит в изучении родословных на основе менделевских законов наследования и пoмoгaeт установить характер наследования признака (доминантный или рецессивный).Так устанавливают наследование индивидуальных особенностей человека: черт лица, роста, группы крови, умственного и психического склада, а также некоторых заболеваний. Например, при изучении родословной королевской династии Габсбургов в нескольких поколениях прослеживаются выпяченная нижняя губа и нос с горбинкой.Этим методом выявлены вредные последствия близкородственных браков, которые особенно проявляются при гомозиготности по одному и тому же неблагоприятному рецессивному аллелю. В родственных браках вероятность рождения детей с наследственными болезнями и ранняя детская смертность в десятки и даже сотни раз выше средней. Близнецовый метод состоит в изучении различий между однояйцевыми близнецами. Этот мeтoд предоставлен самой природой. Он помогает выявить влияние условий среды на фенотип при одинаковых генотипах. Популяционный метод. Популяционная генетика изучает генетические различия между отдельными группами людей (популяциями), исследует закономерности географического распространения генов. Цитогенетический метод основан на изучении изменчивости и наследственности на уровне клетки и субклеточных структур. Биохимический метод позволяет выявить многие наследственные болезни человека, связанные с нарушением обмена веществ. Известны аномалии углеводного, аминокислотного, липидного и других типов обмена веществ.

обмен веществ и энергии в клетках. метаболизм. ассимиляция и диссимиляция.

Процесс обмена — основное свойство живого. В цитоплазме клеток органов и тканей постоянно идет процесс синтеза сложных высокомолекулярных соединений и одновременно с этим — их распад с выделением энергии и образованием простых низкомолекулярных веществ — углекислого газа, воды, аммиака и др.Процесс синтеза органических веществ называется ассимиляцией, или анаболизмом. В ходе ассимиляции обновляются органоиды клетки, и накапливается запас энергии. Распад структурных элементов клетки сопровождается выделением заключенной в химических связях энергии, а конечные продукты распада, вредные для организма, выводятся за пределы клетки, а затем из организма.Процесс распада органических веществ противоположен процессу ассимиляции и называется диссимиляцией, или катаболизмом. Подобного типа реакции идут с поглощением кислорода, поэтому расщепление органических веществ связано с окислением, а освободившаяся при этом энергия идет на синтез ЛТФ (аденозинтрифосфорная кислота), необходимой для ассимиляции.Таким образом, ассимиляция и диссимиляция — это две противоположные, но взаимосвязанные стороны единого процесса — обмена веществ. При нарушении ассимиляции и диссимиляции расстраивается весь обмен веществ.В организме человека непрерывно протекают водный, солевой, белковый, жировой и углеводный обмен. Непрерывный распад и окисление органических соединений возможны лишь тогда, когда количество этих веществ в клетках постоянно пополняется. Однако потребность в питательных веществах неодинакова. Большая их часть используется организмом для образования энергии. В процессе жизнедеятельности организма энергетические запасы непрерывно уменьшаются, и их пополнение идет за счет пищи.Соотношение количества энергии, поступающей с пищей, и энергии, расходуемой организмом, называется энергетическим балансом. Количество потребляемой пищи должно соответствовать энергетическим затратам человека. Метаболизм (от греч. metabole — перемена, превращение), совокупность химических реакций, протекающих в живых клетках и обеспечивающих организм веществами и энергией для его жизнедеятельности, роста, размножения


Поделиться с друзьями:

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.016 с.