Подведение под знак дифференциала — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Подведение под знак дифференциала



по существу равносильно применению свойства 5 независимости интеграла от переменной интегрирования. Суть в том, чтобы в интеграле перейти к другой переменной (t), относительно которой интеграл становится табличным.

 

Примеры.

1) ; 2) ;

 

3) ; 4) ;

5) .

Интегрирование по частям

 

Интегрирование по частям состоит в том, что подынтегральное выражение представляется каким-либо образом в виде произведения двух сомножителей u и dv, затем после нахождения du и v используется формула интегрирования по частям:

 

 

Пример 1. Найти =

= .

 

При выборе обозначения сомножителей обычно за dv выбирают сомножитель, который легко интегрировать, оставшиеся сомножители обозначают за u.

Укажем некоторые типы интегралов, которые удобно вычислять методом интегрирования по частям.

Пусть Р(х) – многочлен, k – число.

1) В интегралах вида:

обозначим:

за u = P(x), за dv - остальные множители.

2) В интегралах вида:

; ; ;

обозначим:

dv = P(x)dx, u - остальные множители.

3) В интегралах вида:

,

где a и b - числа

обозначим:

u = еах, dv - остальные множители.

Пример 2. Найти интеграл .

 

Решение.

 

Пример 3. Найти интеграл .

Решение.

Пример 4. Найти интеграл .

Решение.

 

.

 

 

;

 

;

 

.

 

 

Интегрирование различных классов функций.

 

Интегрирование рациональных функций

 

А) Простейшими дробями называются следующие дроби: (пусть А, В, a, k – числа )

(I типа),

 

(II типа, если k > 1 – целое),

(III типа, если D= b2 – 4ac < 0),

 

(IV типа, если k > 1, D < 0).

 

Б) Рациональной функцией (дробью)

называется отношение двух многочленов

;

если n < m, то дробь называется правильной,

если n > m, то дробь называется неправильной.

Теорема.Каждая неправильная рациональная дробь равна сумме многочлена и правильной дроби.

= f(x) +

Пример. Разложить на простейшие дроби неправильную рациональную дробь .

РЕШЕНИЕ. Выделим целую часть делением числителя на знаменатель:

 

Теорема. Правильная рациональная дробь представляется единственным образом в виде суммы простейших дробей.

 

● Разложение правильной дроби на сумму простейших дробей выполним по правилам:

 

1) если в знаменателе рациональной дроби различные действительные корни, то

 

.

 

2) если в знаменателе рациональной дроби п одинаковых действительных корней, то

.

 

3) если в знаменателе рациональной дроби комплексные корни (D < 0), то

 

.

Неизвестные коэффициенты числителей (А, В, ...) вычисляются методом неопределенных коэффициентов.



Пример. Найти интегралы.

а) ; б) .

Решение.

а) =

Выполним разложение дроби на простые дроби:

= ;

Приравниваем числители дробей левой и правой частей равенства.

* 2 + 2х – 3 = А(х2 – 1) + В(х2 + х) + С(х2 – х)

Приравниваем коэффициенты равенства (*) при одинаковых степенях:

2В = 2, В = 1, С = – 1.

 

 

= ;

.

б) Решение.

=

Разложим на простейшие дроби:

= ;

* х – 4 = А(х – 3) + В(х –2 ;

Подставим корни знаменателя в равенство *

если х = 2, то 2 – 4 = А(2 – 3) + В(2 –2 );

– 2 = – А; А = 2;

если х = 3, то 3 – 4 = А(3 – 3) + В(3 –2 );

– 1 = В; В = – 1.

.

Примеры:






Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...





© cyberpedia.su 2017-2020 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав

0.01 с.