Зачем мы спим. Новая наука о сне и сновидениях — КиберПедия 

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Зачем мы спим. Новая наука о сне и сновидениях

2021-01-29 111
Зачем мы спим. Новая наука о сне и сновидениях 0.00 из 5.00 0 оценок
Заказать работу

Мэттью Уолкер

Зачем мы спим. Новая наука о сне и сновидениях

 

 

Текст предоставлен издательством http://www.litres.ru/pages/biblio_book/?art=38280337&lfrom=25665073

«Зачем мы спим. Новая наука о сне и сновидениях»: Азбука‑Аттикус; Москва; 2018

ISBN 978‑5‑389‑15633‑3

Аннотация

 

До недавних пор у науки не было полного представления о механизмах сна, о всем многообразии его благотворного влияния и о том, почему последствия хронического недосыпания пагубны для здоровья. Выдающийся невролог и ученый Мэттью Уолкер обобщает данные последних исследований феномена сна и приглашает к разговору на темы, связанные с одним из важнейших аспектов нашего существования. «Сон – это единственное и наиболее эффективное действие, которое мы можем предпринять, чтобы каждый день регулировать работу нашего мозга и тела. Это лучшее оружие матушки‑природы в противостоянии смерти. К сожалению, реальные доказательства, разъясняющие все опасности, которым подвергаются человек и общество в случае недосыпания, до сих пор не были в полной мере донесены до людей. Это самое вопиющее упущение в сегодняшних разговорах о здоровье. Исправить его как раз и призвана моя книга, и я очень надеюсь, что она превратится для читателя в увлекательное путешествие, полное открытий. Кроме того, книга нацелена на пересмотр оценки сна и изменение пренебрежительного отношения к нему». (Мэттью Уолкер)

 

Мэттью Уолкер

Зачем мы спим. Новая наука о сне и сновидениях

 

© Matthew Walker, 2017

© Феоклистова В.М., перевод на русский язык, 2018

© Издание на русском языке, оформление. ООО «Издательская Группа «Азбука‑Аттикус», 2018 КоЛибри®

 

* * *

Между вашим сном и иммунной системой существует тесная двунаправленная связь. Сон борется с инфекцией и болезнью, используя все виды оружия из вашего иммунного арсенала, и накрывает вас защитной оболочкой.

Мэттью Уолкер

 

Книга Мэттью Уолкера выходит за рамки элементарного удовлетворения интеллектуального любопытства, поскольку рассказывает, как последствия недостаточного количества и низкого качества сна влияют на возможности познания, здоровье, безопасность и профессиональную деятельность; она дает понимание сути явлений, которые могут радикально изменить ваш образ жизни. В наше перенасыщенное вызовами время трудно найти более нужную книгу, чем эта.

Адам Гэззели, основатель и исполнительный директор исследовательского института Neuroscape, профессор неврологии, физиологии и психиатрии

 

Мэттью Уолкер – блестящий рассказчик. Вы узнаете, как сон делает нас более здоровыми и умными и как избежать всевозможных рисков, связанных с хроническим недосыпанием.

Марк Роузкинд, глава NHTSA, научный сотрудник NASA

 

Глубокая и занимательная книга.

Дэниел Гилберт, профессор психологии Гарвардского университета

 

Посвящается Дачеру Келтнеру, вдохновившему меня на написание этой книги

 

Кофеин, джетлаг и мелатонин

 

 

Есть ритм?

 

Основой многих вопросов, заданных в начале главы, является мощная формирующая сила вашего суточного ритма, известная также как ваш циркадный, или околосуточный, ритм. У любого живого существа вырабатывается собственный циркадный ритм (circa означает «около», а dian – производное от diam, означающего «день»). Действительно, у каждой живой твари на нашей планете с продолжительностью жизни более нескольких дней вырабатывается этот естественный цикл. Внутренний 24‑часовой механизм в вашем мозге посылает свой сигнал о циркадном ритме каждому участку мозга и каждому органу вашего тела.

Ваш суточный ритм определяет, в частности, когда вы предпочитаете бодрствовать и когда хотите спать. Но он также контролирует и другие ритмические схемы. К ним относятся ваши заданные во времени желания есть и пить, настроение и эмоции, количество выделяемой мочи[5], базовая температура тела, скорость обмена веществ и выработка многочисленных гормонов. Не случайно, что вероятность побить олимпийский рекорд четко привязана ко времени суток: она максимальна в естественный пик человеческого циркадного ритма, чуть позже полудня. Даже процесс рождений и смертей демонстрирует циркадную ритмичность благодаря заметным колебаниям в жизненно важных обменных, сердечно‑сосудистых, температурных и гормональных процессах, которые контролирует этот ритмоводитель.

Задолго до того, как мы открыли этот задающий общий ритм биологический фактор, в одном оригинальном эксперименте было осуществлено нечто совершенно замечательное: остановлено время – по крайней мере, для растений. В 1729 году французский геофизик Жан‑Жак Дорту де Меран нашел первое доказательство того, что жизнь растения определяется его собственным внутренним временем.

Де Меран изучал движение листьев растений, которые демонстрировали гелиотропизм, то есть феномен, когда листья или цветок следуют траектории солнца при его движении по небосводу. В частности, де Меран заинтересовался одним растением, которое называется мимоза стыдливая (Mimosa pudica)[6]. Листья этого растения не только описывают дугу, следя за движением солнца по небу, – они сворачиваются ночью, словно увядая. С наступлением следующего дня абсолютно здоровые листья вновь раскрываются, словно зонтик. Такой образец поведения повторяется каждое утро и каждый вечер, из‑за чего знаменитый биолог‑эволюционист Чарльз Дарвин назвал их «спящими листьями».

До эксперимента де Мерана многие считали, что раскрытие и сворачивание листьев растения было обусловлено исключительно восходом и заходом солнца. Вполне логично: дневной свет (даже в пасмурные дни) побуждал листья широко раскрываться, а последующее наступление темноты командовало листьям закрывать лавочку и сворачиваться. Эта версия была опровергнута де Мераном. Сначала он поместил растение на воздухе, где оно могло получать сигналы света и темноты, которые, по всей вероятности, ассоциировались у него с днем и ночью. Как и ожидалось, листья раскрывались при дневном свете и сворачивались ночью.

А затем произошел гениальный поворот. Де Меран на сутки поместил растение в плотно закрытую коробку, окутав его полной темнотой днем и ночью. В течение этих двадцати четырех часов абсолютной тьмы он время от времени подсматривал за растением и, не нарушая режима темноты, изучал положение листьев. Несмотря на то что растение было лишено влияния солнечного света, оно все равно вело себя так, будто купалось в лучах солнца. Его листья гордо раскрывались на восходе, затем, словно по команде, в конце дня оно сворачивало листья, по‑прежнему не получая сигнала от светила, и в таком состоянии листья оставались всю ночь.

Это было революционное открытие: де Меран показал, что живой организм ведет отсчет своего собственного времени, а не является рабом периодических команд солнца. Где‑то внутри растения существовал генератор суточного ритма, который мог отслеживать время без подсказок внешнего мира. Это растение имело не просто циркадный ритм, а эндогенный, или самогенерирующийся, ритм. Подобное явление весьма похоже на самовоспроизводящееся биение сердца. Разница лишь в том, что ритм вашего сердца гораздо быстрее, обычно один удар в секунду, а не в сутки, как в случае циркадного ритма.

Удивительно, но понадобилось еще двести лет, чтобы доказать: у людей имеется похожий циркадный ритм, генерируемый внутри нашего организма. Был поставлен эксперимент, который привнес нечто неожиданное в наше понимание внутреннего отсчета времени. Шел 1938 год. Профессор Натаниэл Клейтман из Чикагского университета вместе со своим научным ассистентом Брюсом Ричардсоном собирались провести еще более радикальный научный эксперимент. Он требовал от ученых такой самоотверженности, что до сегодняшнего дня мы вряд ли можем с чем‑либо сравнить ее.

Клейтман и Ричардсон собирались стать подопытными кроликами в собственном эксперименте. Собрав запас еды и воды сроком на шесть недель, взяв с собой пару разборных больничных кроватей, они направились в Мамонтову пещеру в штате Кентукки – одну из самых глубоких на планете, настолько глубокую, что в ее дальние уголки никогда не проникает солнечный свет. Именно в этом мраке Клейтман и Ричардсон собирались доказать, что биологический ритм человека составляет приблизительно одни сутки (циркадные), а не в точности сутки.

Кроме еды и воды ученые взяли с собой массу измерительных приборов для определения температуры тела, а также ритмов сна и бодрствования. Область, где проводились необходимые замеры, образовывала центр их жизненного пространства, огороженного с обеих сторон кроватями. Высокие ножки кроватей были поставлены в ведра с водой – подобно замкам, обнесенным рвами, чтобы отпугнуть бесчисленных маленьких (и не очень маленьких) тварей, скрывающихся в глубинах Мамонтовой пещеры, и не позволить им забраться в постели.

Вопрос, на который должен был ответить эксперимент Клейтмана и Ричардсона, был простым: когда их биологические ритмы сна и бодрствования будут изолированы от ежедневного цикла света и темноты, станут ли они, вкупе с их температурой тела, непостоянными или останутся такими же, как у людей внешнего мира, находящихся под воздействием суточного светового ритма? В целом они провели тридцать два дня в абсолютной темноте. Во время этого эксперимента они не только обзавелись внушительной растительностью на лице, но и сделали два революционных открытия. Первое заключалось в том, что при отсутствии солнечного света люди, подобно гелиотропным растениям де Мерана, вырабатывают собственные эндогенные циркадные ритмы. То есть ни Клейтман, ни Ричардсон не опустились до беспорядочного чередования периодов бодрствования и сна, а демонстрировали предсказуемый и повторяющийся образец продолжительного периода бодрствования (примерно пятнадцать часов), прерывающийся примерно девятичасовым сном.

Вторым неожиданным и более важным результатом было то, что протяженность их неизменно повторяющихся циклов сна и бодрствования составила не привычные двадцать четыре часа, а стабильно дольше, чем привычные земные сутки. Цикл сна и бодрствования Ричардсона, которому было за двадцать, составил от двадцати шести до двадцати восьми часов. Цикл Клейтона, которому тогда было за сорок, был чуть ближе к двадцати четырем часам, но опять‑таки больше суток. Таким образом, в условиях изоляции и в полной темноте внутренне генерируемые сутки каждого из них составили несколько больше двадцати четырех часов. Как неточные часы, Клейтман и Ричардсон к каждым проходящим реальным суткам начали прибавлять время, основываясь на собственном хронометраже.

Поскольку наш внутренний биологический цикл составляет не в точности двадцать четыре часа, а около того, потребовалось ввести новый термин: циркадный ритм – то есть ритм, период которого приблизительно равен протяженности суток, а не в точности двадцати четырем часам[7]. За семьдесят с лишним лет после плодотворного эксперимента Клейтмана и Ричардсона мы уже установили, что средняя продолжительность периода эндогенного циркадного ритма взрослого человека составляет примерно двадцать четыре часа пятнадцать минут. Не слишком далеко от 24‑часового оборота Земли, но и не настолько точно, чтобы любой уважающий себя швейцарский часовщик был доволен.

К счастью, большинство из нас не живет в Мамонтовой пещере и не пребывает в ее постоянной темноте. Мы регулярно видим солнечный свет, который спасает наши вечно спешащие внутренние циркадные часы. Солнечный свет систематически подстраивает наши не совсем точные внутренние часы, каждый день подводя нас к точно, а не приблизительно двадцати четырем часам[8].

То, что мозг использует дневной свет для подстройки, – не случайное совпадение, ведь дневной свет – это самый стабильный регулярный сигнал в окружающей нас среде. С момента зарождения нашей планеты и каждый последующий день без исключения солнце всегда восходит утром и садится вечером. Действительно, причина, по которой большинство живых существ приняли циркадный ритм, – необходимость синхронизировать себя и свою деятельность, как внутреннюю (например, температуру), так и внешнюю (например, питание), с орбитальной механикой Земли, которая, вращаясь вокруг своей оси, регулярно чередует фазы света (солнце взошло) и темноты (солнце село).

Однако дневной свет – это не единственный сигнал, на который может среагировать наш мозг, чтобы перезагрузить биологические часы; хотя, наверное, самый главный и наиболее предпочтительный при его наличии. Мозг также может использовать другие внешние подсказки, если они достаточно стабильно повторяются: среди них еда, упражнения, колебания температуры и даже регулярное социальное взаимодействие. Все эти факторы имеют способность перезагружать биологические часы, позволяя им четче подстраиваться под 24‑часовой цикл. По этой причине люди с определенной степенью слепоты не утрачивают полностью свой циркадный ритм. Несмотря на то что из‑за слепоты они не получают световых подсказок, другие события действуют на них в качестве триггера[9]. Любой сигнал, который использует мозг с целью переустановки внутренних часов, называется zeitgeber – от немецкого «ритмоводитель», или «таймер». Таким образом, хотя свет остается самым надежным и, следовательно, основным таким ритмоводителем, существуют и другие, которые можно использовать в дополнение к смене дня и ночи или вместо нее.

24‑часовые биологические часы, расположенные в мозге, называются супрахиазматическим, или надперекрестным, ядром. Как и в случае с большинством анатомических терминов, это название, пусть его и не так легко произнести, достаточно информативно: supra означает «над», а chiasm – «перекресток». Упомянутый перекресток образуют зрительные нервы, идущие от глазных яблок. Эти нервы встречаются в центре вашего мозга, где происходит частичный перекрест волокон зрительного нерва. Супрахиазматическое ядро расположено именно над этим пересечением, и не случайно. Оно анализирует световой сигнал, отправляемый из каждого глаза по зрительным нервам к коре затылочных долей мозга для визуальной обработки. Супрахиазматическое ядро использует эту надежную световую информацию, чтобы устранить неточность хода внутреннего времени и привести его к четко выраженному 24‑часовому циклу, предотвращая какое‑либо отклонение.

Когда я говорю вам, что супрахиазматическое ядро состоит из 20 000 клеток мозга, или нейронов, вы можете предположить, что это огромное количество, занимающее большой объем вашего черепного пространства, но на самом деле это совсем не много. Мозг состоит приблизительно из 100 миллиардов нейронов, так что относительно всего объема мозга супрахиазматическое ядро – крохотная область. Однако, несмотря на малые размеры супрахиазматического ядра, его влияние на мозг весьма заметно. Эти крошечные часики – главный дирижер симфонии биологических ритмов, как вашей жизни, так и жизни всех остальных видов. Супрахиазматическое ядро контролирует огромное количество образцов поведения, включая предмет нашего разговора в этой главе – ваше желание бодрствовать или спать.

Для видов, которые активны в течение дня, например для человека, циркадный ритм запускает в дневное время многие биологические процессы, давая вам возможность быть бодрым и активным. Затем эти процессы постепенно затихают и в ночное время окончательно сходят на нет, прекращая свое влияние. На рис. 1 показан пример циркадного ритма температуры вашего тела. Рисунок представляет график внутренней температуры тела, измеряемой ректально у группы взрослых испытуемых. С полудня (в левой части графика) температура тела начинает повышаться, достигая пика в послеобеденные часы. Затем траектория меняется, температура начинает падать, по мере приближения времени сна опускаясь ниже температуры полуденной точки отсчета.

Биологический циркадный ритм координирует снижение внутренней температуры тела по мере приближения вашего обычного времени сна. Нижнего порога температура достигает через два часа после начала сна. Однако этот температурный ритм не зависит от того, действительно ли вы спите. Если бы я всю ночь не позволял вам уснуть, ваша внутренняя температура все равно бы показала точно такой график. Несмотря на то что снижение температуры помогает стимулировать сон, она будет повышаться и понижаться независимо от того, спите вы или бодрствуете. Это классическая демонстрация предопределенного циркадного ритма, движение которого, как тиканье метронома, обязательно будет повторяться снова и снова. Температура – это один из суточных ритмов, которыми управляет супрахиазматическое ядро. Другие – бодрствование и сон. Таким образом, они находятся под контролем циркадного ритма, а не наоборот. То есть ваш циркадный ритм будет повторяться каждые двадцать четыре часа, независимо от того, спали вы или нет. В этом отношении циркадный ритм очень стабилен. Но посмотрим на разных людей и увидим, что их циркадные ритмы отличаются.

 

Рис. 1. Типичный 24‑часовой циркадный ритм (внутренняя температура тела)

 

Мой ритм – это не ваш ритм

 

Хотя каждый человек внутренне неизменно следует 24‑часовому циклу, его пиковые точки поразительно различаются. Некоторые приходят к пику бодрствования рано утром, а сонливость ощущают ранним вечером. Эти ранние пташки (утренний тип) составляют около 40 % населения. Они с удовольствием просыпаются на рассвете или сразу после восхода и тут же готовы приступить к работе, поскольку именно на это время суток приходится пик их работоспособности. Другие люди относятся к вечернему типу (примерно 30 % населения). Они предпочитают ложиться спать поздно и вставать поздним утром, а иногда спят до полудня. Остальные 30 % располагаются где‑то между утренним и вечерним типами, с легким уклоном в сторону вечернего – к ним отношусь и я.

Вероятно, вам известны эти два типа людей как жаворонки и совы в просторечии. Совы, в отличие от жаворонков, как бы ни старались, просто не могут заснуть рано и засыпают лишь под утро. Бодрствуя допоздна, совы терпеть не могут просыпаться рано. В это время суток они еще не в состоянии действовать активно, потому что, хотя они вроде бы проснулись, их мозг все утро продолжает оставаться в сонном состоянии. Это особенно верно в отношении отдела головного мозга, называемого префронтальной корой, которая расположена в лобных долях и которую можно считать штаб‑квартирой нашего мозга. Префронтальная кора управляет мыслительной деятельностью и логическим мышлением, а также помогает держать наши эмоции под контролем. Когда сова вынуждена просыпаться слишком рано, ее префронтальная кора остается нетрудоспособной, будто не подключенной к сети. Подобно остывшему двигателю, запущенному рано утром, ей требуется некоторое время, чтобы прогреться до рабочей температуры – до тех пор она не сможет эффективно функционировать.

Принадлежность взрослого человека к типу сов или жаворонков, известная также как их хронотип, в большой степени определяется генетикой. Если вы сова, то, скорее всего, один из ваших родителей (а то и оба) тоже сова. К сожалению, в двух случаях общество довольно несправедливо относится к совам. Во‑первых, на них навешивают ярлык лентяев, ведь поскольку они засыпают лишь под утро, то и просыпаются довольно поздно. Во‑вторых, сов критикуют (как правило, жаворонки), ошибочно считая, что такой график – это выбор самих сов, сделанный в силу их неорганизованности, и если бы они были более дисциплинированны, то без труда просыпались бы ранним утром. Однако для сов это вовсе не вопрос свободного выбора. Они привязаны к такому графику жесткой схемой собственной ДНК, так что это не их сознательная ошибка, а скорее генетическая судьба.

Второе – это прочно укоренившиеся в обществе несправедливые условия игры, касающиеся графиков работы, нацеленных на раннее начало, что, естественно, оказывается на руку жаворонкам и ставит в проигрышное положение сов. И хотя ситуация меняется к лучшему, обычные графики работ принуждают сов к неестественному ритму сна и бодрствования. Соответственно утром работоспособность сов невысока, и они не могут продемонстрировать свой истинный потенциал, поскольку пик их формы приходится на то время, когда рабочий день подходит или уже подошел к концу. Печальнее всего то, что совы чаще страдают недосыпанием, поскольку им приходится просыпаться с жаворонками, а заснуть они могут лишь поздним вечером. Таким образом, совы вынуждены, как говорится, жечь свечу с обоих концов и буквально сгорать на работе. Следовательно, из‑за недосыпания у сов ухудшается здоровье, что включает в себя более высокий риск возникновения депрессий, тревожных расстройств, диабета, рака, сердечных болезней и инсультов.

В отношении таких людей общество должно внести изменения, которые предоставляли бы им удобства, похожие на те, которыми мы обеспечиваем людей с физическими ограничениями (например, слабовидящих). Нам требуются более гибкие рабочие графики, которые будут лучше приспособлены для всех хронотипов, а не только для одного.

Возможно, вы зададитесь вопросом, почему матушка‑природа заложила в людях такую вариативность. Будучи социальными существами, разве не должны мы все быть синхронизированы и, следовательно, просыпаться в одно и то же время, чтобы максимально способствовать человеческому общению? Похоже, что нет. Как мы позже увидим в этой книге, людям, по всей вероятности, удалось развить привычку совместного сна не только в парах, но и в семьях, и даже в племенах. Оценивая это обстоятельство эволюции, можно понять пользу такой генетически запрограммированной вариативности во временных предпочтениях сна‑бодрствования. В границах одной группы совы будут бодрствовать до часу‑двух ночи и проснутся в девять‑десять утра. А жаворонки пойдут спать в девять вечера и проснутся в пять утра. Таким образом, группа в целом остается уязвимой (то есть все ее участники спят) лишь в течение четырех часов, а не восьми, и при этом каждая из подгрупп имеет возможность полноценного восьмичасового сна. Таким образом, подобное разделение на 50 % повышает возможность выживания. Матушка‑природа никогда не отказалась бы от биологического признака – в данном случае от полезной вариативности времени сна и пробуждения в пределах племени, – который мог бы увеличить шансы на выживание и общую выносливость вида. Она и не отказалась.

 

Мелатонин

 

Ваше супрахиазматическое ядро передает повторяющийся сигнал ночи и дня вашему мозгу и телу, используя циркулирующего в крови связного под названием мелатонин. Мелатонин имеет и другие названия, например гормон темноты или вампирский гормон. Не потому, что он наводит ужас, а просто потому, что вырабатывается ночью. Подчиняясь инструкции супрахиазматического ядра, содержание мелатонина в крови начинает повышаться с наступлением сумерек. В систему кровообращения это вещество поступает из эпифиза, или шишковидной железы, расположенной в глубине мозга. Мелатонин действует как мощный рупор, который разносит по мозгу и телу недвусмысленное послание: «Темно! Стало темно!» Так наш организм получает сообщение о наступлении ночи, а вместе с этим – команду о времени перехода ко сну[10].

Таким образом, мелатонин помогает регулировать выбор времени сна, сигнализируя всему организму о наступлении темного времени суток. Но на возникновение самого сна мелатонин оказывает небольшое влияние, в то время как относительно этого многие склонны заблуждаться. Чтобы уяснить это различие, давайте подумаем о сне как о 100‑метровом олимпийском забеге. Мелатонин – это голос организатора забега, который объявляет: «На старт!» – а затем стреляет из стартового пистолета, командуя начать забег, но при этом сам в гонке (сне) не участвует. По этой аналогии участниками забега являются другие отделы мозга и процессы, которые активно генерируют сам сон. Мелатонин выводит эти порождающие сон участки мозга на стартовую линию сна.

По этим причинам мелатонин – не вспомогательное средство сна, по крайней мере для здоровых людей, не страдающих от синдрома смены часовых поясов (ниже мы рассмотрим этот синдром и помощь, которую в этом случае может оказать мелатонин). В лекарствах чистого мелатонина содержится совсем не много, если он вообще в них есть. Но мелатонин оказывает серьезный эффект плацебо, который нельзя недооценивать; эффект плацебо – это вообще самое надежное воздействие всей фармакологии. Не менее важно понимать тот факт, что отпуск мелатонина без рецепта во всем мире, как правило, никак не регулируется контролирующими органами, такими как американское Управление по санитарному надзору за качеством пищевых продуктов и медикаментов. Научные оценки безрецептурных торговых марок обнаружили, что концентрация мелатонина варьируется от 83 %, что меньше, чем заявлено на этикетке, до 478 %, что значительно превышает указанное количество [3].

Во сне концентрация мелатонина в течение ночи медленно понижается. С рассветом, когда солнечный свет проникает в мозг через глаза (даже сквозь закрытые веки), своего рода тормозная педаль действует на шишковидную железу, прекращая секрецию мелатонина. Отсутствие циркулирующего в крови мелатонина сообщает мозгу, что достигнута финишная прямая сна, а значит, пора признать забег завершившимся и позволить активному периоду бодрствования вернуться на оставшуюся часть дня. В этом отношении мы, люди, похожи на солнечные батареи. По мере приближения ночи прекращает работу солнечная тормозная педаль, блокирующая выработку мелатонина. Когда содержание этого вещества в крови повышается, поступает сигнал о начале очередной фазы темноты и на стартовую линию вызывается новый период сна.

На рис. 2 вы видите типичные показатели выработки мелатонина. Она начинается через несколько часов после наступления сумерек, затем быстро увеличивается, достигая пика около четырех часов утра. Чем ближе рассвет, тем интенсивнее снижается секреция мелатонина, падая к утру до неизмеряемого уровня.

 

Рис. 2. Цикл мелатонина

 

Потребность во сне и кофеин

 

Ваш суточный циркадный ритм – первый из двух факторов, определяющих режим бодрствования и сна. Второй – потребность во сне. Именно в этот самый момент в вашем мозге накапливается химическое вещество, называемое аденозин. И с каждой минутой бодрствования его концентрация будет увеличиваться. Чем дольше вы бодрствуете, тем больше аденозина накапливается в вашем организме. Подумайте об аденозине как о химическом таймере, который непрерывно регистрирует количество времени, прошедшего с того момента, как вы проснулись утром.

Последствие роста концентрации аденозина в мозге – усиливающееся желание спать. Это и есть потребность во сне – вторая сила, которая определяет, когда вы почувствуете сонливость и когда вам следует лечь спать. Обладая эффектом двойного действия, высокая концентрация аденозина одновременно «уменьшает громкость» сигнала из долей мозга, способствующих бодрствованию, и усиливает сигнал из участков, стимулирующих сон. В результате такого химического воздействия, когда концентрация аденозина достигает своего пика, вас охватывает неодолимое желание поспать[11]. Это происходит с большинством людей после двенадцати‑шестнадцати часов бодрствования.

Однако вы можете искусственно приглушить подаваемый аденозином сигнал ко сну, используя вещество, которое заставит вас чувствовать себя бодрее, – кофеин. Кофеин – это не пищевая добавка. Скорее это наиболее широко употребляемый (и злоупотребляемый) в мире психостимулятор. Это второй после нефти наиболее продаваемый товар на планете. Потребление кофеина представляет собой самый длительный бесконтрольный эксперимент, проводимый над человечеством, соперничать с которым может лишь потребление алкоголя, и он продолжается по сей день.

Кофеин успешно сражается с аденозином за привилегию проникнуть на приемный пункт аденозина, то есть в рецепторы мозга. Как только кофеин оккупирует эти участки, он не стимулирует их, подобно аденозину, вызывая в вас сонливость. Скорее кофеин блокирует и эффективно подавляет эти рецепторы, действуя как маскирующий агент. Это похоже на то, как человек затыкает уши, чтобы не слышать окружающего шума. Нападая на эти рецепторы и занимая их, кофеин блокирует сигнал сна, который обычно посылает мозгу аденозин. Развязка: кофеин вводит вас в заблуждение и заставляет чувствовать себя живым и бодрым, несмотря на высокий уровень аденозина, который без такого воздействия склонил бы вас ко сну.

Уровень циркулирующего кофеина достигает пика примерно через тридцать минут после приема внутрь. Однако проблема в том, что кофеин проявляет удивительную живучесть в человеческом организме. В фармакологии, когда обсуждается эффективность какого‑нибудь лекарства, мы используем термин «период полувыведения». Сам термин указывает на время, которое требуется организму для выведения 50 % концентрации лекарственного средства. Средний период полувыведения кофеина составляет от пяти до семи часов. Скажем, вы после ужина, примерно в 19:30, выпиваете чашку кофе, – значит, к половине второго ночи 50 % кофеина, возможно, еще активно циркулируют в тканях вашего мозга. Другими словами, в половине второго вы только на полпути к полному очищению своего мозга от кофеина, который приняли за ужином.

Нет ничего хорошего в этих 50 %. Половина порции кофеина все еще достаточно действенна, и организму в течение ночи предстоит серьезная работа по выведению кофеина. Сон не придет легко и не будет спокойным, пока ваш мозг продолжает сражаться с противоборствующей силой кофеина. Большинство людей не осознают, как много времени требуется для расщепления лишь одной дозы кофеина, и, проснувшись утром, никак не связывают плохой сон и выпитую десятью часами ранее чашку кофе.

Кофеин содержится не только в кофе, определенных сортах чая и многих энергетиках, но также и в других продуктах – таких, как темный шоколад и мороженое; он также входит в состав некоторых лекарств, например в состав таблеток для похудения и болеутоляющих средств. Кофеин, являясь одним из самых распространенных виновников того, что люди не могут быстро уснуть и крепко спать, порой вынуждает ошибочно подумать о настоящем заболевании – бессоннице. Также имейте в виду, что пометка «декаф», «декофеинизированный», не означает, что продукт действительно не содержит кофеина. Одна чашка такого кофе содержит 15–30 % от дозы в чашке обычного напитка, а значит, его никак нельзя назвать бескофеиновым. Стоит вам выпить три‑четыре чашки кофе без кофеина вечером, и это столь же отрицательно скажется на вашем сне, как и чашка обычного кофе.

Любая кофеиновая встряска тем не менее проходит. Кофеин выводится из организма с помощью ферментов печени[12], которая со временем изнашивается. Эта метаболическая способность в большой степени зависит от генетики [4]: у некоторых людей более эффективный вариант ферментов, разрушающих кофеин, что позволяет печени быстро вывести его из кровотока. Такие редкие люди могут выпить за ужином эспрессо и в полночь без проблем заснуть. Другим, однако, достались медленнее действующие разновидности ферментов, и их организму требуется гораздо больше времени, чтобы вывести такое же количество кофеина. В результате они очень чувствительны к воздействию этого вещества. Бодрящий эффект одной утренней чашки чая или кофе сохранится на бóльшую часть дня, но, рискни они выпить вторую чашку хотя бы в полдень, им будет трудно заснуть вечером. С возрастом скорость выведения кофеина изменяется: чем старше мы становимся, тем больше времени требуется нашему организму, чтобы вывести кофеин, и таким образом мы с возрастом становимся более чувствительными к нарушающему сон кофеиновому эффекту.

Если поздно ночью вы пьете кофе, пытаясь взбодриться, вам следует быть готовым к неприятным последствиям, когда ваша печень начнет выводить кофеин из организма, – явлению, широко известному как кофеиновая абстиненция. Подобно тому как в игрушечном роботе заканчивается батарейка, так и уровень вашей энергии стремительно падает. Вам трудно работать и концентрироваться, и снова накатывает мощная волна сонливости.

И теперь мы понимаем, в чем причина. Все то время, что кофеин циркулирует в вашем организме, химическое вещество, вызывающее сонное состояние (аденозин), блокируемое кофеином, тем не менее продолжает накапливаться. Но ваш мозг не знает об этом приливе стимулирующего сон аденозина, потому что стена из кофеина, которую вы возвели, скрывает его от вашего восприятия. Но как только ваша печень разрушает кофеиновую баррикаду, вы получаете мощный ответный удар. На вас набрасывается та же невыносимая сонливость, которую вы ощущали двумя‑тремя часами ранее, до того как выпили чашку кофе, и вместе с тем начинает действовать весь тот аденозин, который уже накопился в организме и ждал лишь исчезновения кофеина. Когда в результате расщепления кофеина рецепторы наконец освобождаются, аденозин врывается в мозг и захватывает рецепторы. Как только это происходит, вас охватывает сильнейшее желание спать, стимулированное аденозином, – начинается упомянутая выше кофеиновая абстиненция. И если только вы не выпьете еще кофе, чтобы отразить атаку аденозина, – что уже приблизит вас к зависимости, – вам будет очень, очень трудно продолжать бодрствовать.

Чтобы убедить вас в том, насколько сильное воздействие имеет кофеин на человеческий организм, я расскажу о тайном исследовании, проведенном NASA в 1980‑х годах. Ученые подвергали пауков воздействию различных наркотиков, а затем наблюдали, какую паутину они плели [5]. В исследовании использовали такие наркотики, как ЛСД, амфетамин, марихуана и кофеин. Результаты, которые говорят сами за себя, можно увидеть на рис. 3. Исследователи заметили, что, когда паукам вводили кофеин, они становились совершенно неспособны сплести конструкцию, хотя бы напоминающую нормальную функциональную паутину, – даже по сравнению с действием других наркотиков.

Стоит отметить, что кофеин – стимулятор и единственное вещество, вызывающее привыкание, которое мы, не задумываясь, даем нашим детям. К последствиям такого легкомыслия мы обратимся ниже.

 

Рис. 3. Воздействие различных наркотиков на плетение паутины

 

В ногу, не в ногу

 

Оставим ненадолго кофеин. Вы можете предположить, что два фактора, которые регулируют ваш сон, – суточный циркадный ритм супрахиазматического ядра и стимулирующий сон сигнал аденозина – сообщаются друг с другом, чтобы объединить свое воздействие. На самом деле этого не происходит. Это две разные и отдельные системы, не зависящие друг от друга. Они не спарены, хотя и ориентированы друг на друга.

Рис. 4 иллюстрирует 48 часов слева направо, два дня и две ночи. Пунктирной линией обозначен циркадный ритм, известный также как Процесс‑Ц. Как синусоида, она периодически падает и снова поднимается. Циркадный ритм начинает усиливать свою активность за несколько часов до вашего пробуждения. Он внедряет в наш мозг и тело бодрящий сигнал. Подумайте об этом как о приближающемся издалека марширующем оркестре: сначала сигнал слабый, но постепенно он нарастает и нарастает. Ближе к полудню у большинства здоровых взрослых людей активирующий сигнал циркадного ритма достигает своего пика.

Теперь посмотрим, что происходит с другим контролирующим сон фактором – аденозином. Это вещество вызывает потребность во сне, также известную как Про


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.018 с.