Человекоразмерность и редукционизм. — КиберПедия 

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Человекоразмерность и редукционизм.

2020-04-01 119
Человекоразмерность и редукционизм. 0.00 из 5.00 0 оценок
Заказать работу

 

Идеальная парадигмальная наука подразумевает сохранение неизменным в своей основе идеала классической науки, а он, в свою очередь, подразумевает проблему редукционизма. Самым ярким примером попыток решения этой проблемы в истории науки являются попытки редуцировать к физике химию.

К концу XIX века химическая молекула моделировалась системой атомов, связанных между собой дискретными и насыщаемыми силами химического сродства. Это понятие, прежде всего, являлось рудиментами алхимического мышления. В отличие от физики, химия в то время была больше философской, логической наукой и была крайне слабо математизирована. Лишь в 1860 году химики голосованием договорились о конечном виде химической формулы, в то время как физика (тогда ещё механика) крепко держала позиции и имела развитый и структурированный мат. аппарат. Однако химические взаимодействия зависят не только от количества, но и от природы вещества. Причём вещества – как минимум две молекулы, в отличие от физики, способной изучать одну материальную точку [7]. Взаимовлияние физических и химических теорий было всегда значительно: если Дж.Дальтон сформулировал в начале XIX века теорию вступления вещества в реакцию в определённых пропорциях на основании физических, атомистических идей, то полвека спустя Г.Гельмгольц обосновал существование единицы электрического заряда по аналогии с существованием химических атомов. Вплоть до 1905 года (год выхода в свет работы А.Эйнштейна) не было теоретического обоснования молекулярно-кинетической теории. Вопрос оставался открытым и его решение искали в физике.

Первой явной попыткой математизации химии было введение Крум-Брауном теорий графов и операндов при решении химических задач. Причём математика применялась не для решения, как такового, а лишь для получения иной, более удобной для дальнейших действий формы записи. Эту теорию позже развил А.Кэли, введя новый тип графов – корневое дерево. Каждому химическому атому в соединении сопоставлялась вершина графа, а структурному штриху (вектору валентности) – его ребро. Кэли ставил задачей расшифровку загадочных химических формул при помощи математических аналогий. Напротив, алгебраист Дж.Сильвестр пытался использовать известные сведения о валентности и устойчивости химических соединений для прояснения природы инвариантов (введённое им понятие). Атому валентностью n ставится в соответствие бинарная форма порядка n. Устанавливается химико-математическая аналогия, причём конструируется частный способ задания этой аналогии. Эта обратимость целей – или математика для прояснения особенностей химических соединений, или химия для прояснения свойств математических – свидетельствует об одинаковой неразвитости этих теорий, об их безсубстанциональности и формальности. Химическое соединение по-прежнему всего лишь абстрактный объект с набором формальных свойств…

Смысл валентной формулы стал понятен лишь с открытием электрона в 1897г. Развитие квантовой физики повлекло за собой формирование квантовой химии (пусть и с опозданием, обусловленным низким уровнем математической подготовки химиков рубежа веков). Квантовая химия, использовавшая методы квантовой механики для решения химических задач, должна была помочь выстроить понятийную схему на основе физико-математических теоретических построений и способствовать отказу от чисто формальных соотношений между объектами химии и математики или физики. От физически не сформулированных представлений о природе химических связей прейти к формулировке оных как некоего функционала, строящегося на точном решении задач квантовой механики. Однако, для точного решения задач внутри химии, представляется единственно возможный путь – формулировать их на языке физики, допускающей точные числовые решения. Но за столетия своего развития язык химии оказался столь развит и самодостаточен, что в процессе решения задач химии именно химический язык оказался необходим. Кроме того, при использовании независимых расчётных методов квантовой механики обнаружилось, что при максимально точном и общем гамильтониане исходной системы, в полученном максимально точном численном решении химические эффекты не проявлялись. Их приходилось как бы вводить дополнительно, что рушило всю стройность теоретического дедуктивного расчёта. Складывалась ситуация, когда доказавшая свою обоснованность теория как теория физическая оказывалась малопригодной в области химии, хотя там фигурировали те же самые объекты.

И хотя алгоритмические проблемы редукции химии к физике очевидны, попытки её проведения продолжаются до сих пор. И дело тут, скорее, в статусе физики как «науки о природе и её законах». Редукция к физике являлась бы свидетельством некоего единства естественнонаучного подхода, свидетельством единства науки, выраженном в её понятиях. Таким образом, подгонка требований описания на языке физическо-математических понятий к требованиям соответствия химическим понятиям и необходимость получения описаний в химических терминах может истолковываться как попытка создать химию как естественнонаучную теоретическую дисциплину, отвечающую требуемым критериям строгости. Необходимость получения наглядных образов и решений не включается в набор этих требований, однако обращение к ним диктуется желанием построить нормальную систему объяснений. Произвол в выборе языка или метода описания всегда остаётся, определяясь в зависимости от поставленной задачи. Сама точность теории определяется каждый раз задачей, поставленной исследователем. Отсюда в конструирование науки и входит задаваемое человеком и явно фиксируемое целеполагание. Стремления иерархизировать или, напротив, сделать однородными, гомогонизировать объекты оперирования не есть отражения реальности как таковой, а есть всего лишь отражения человеческого манипулирования с нею.


Поделиться с друзьями:

Типы оградительных сооружений в морском порту: По расположению оградительных сооружений в плане различают волноломы, обе оконечности...

Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.007 с.