Термоэлектрический генератор (термопары) — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Термоэлектрический генератор (термопары)

2020-04-01 125
Термоэлектрический генератор (термопары) 0.00 из 5.00 0 оценок
Заказать работу

Возникновение контактной разности потенциалов при соприкосновении двух разнородных проводников, откры­тое Вольта в последнем десятилетии XVIII века, при­влекло внимание физиков к процессам, происходящим в цепях разнородных материалов. Одной из фундамен­тальных работ в этой области, положившей фактически начало термоэлектрическим исследованиям, явилась статья немецкого ученого Зеебека «К вопросу о магнит­ной поляризации некоторых металлов и руд, возникаю­щей в условиях разности температур», опублико­ванная в докладах Прусской академии наук в 1822 г.

Суть явления, наблюдавшегося Зеебеком в процессе опыта (и вошедшего впоследствии в физику под терми­ном «эффект Зеебека»), состояла в том, что при замыка­нии концов цепи, состоящей из двух разнородных ме­таллических материалов, спаи которых находились при разных температурах, магнитная стрелка, помещенная вблизи такой цепи, поворачивалась так же, как в присут­ствии магнитного материала. Угол поворота стрелки был связан с величиной разности температур на спаях ис­следуемой цепи.

Объективный анализ опытов Зеебека (даже при тогдашнем уровне физических знаний) мог бы дать однозначное объяснение эффекту, обусловив его воз­никновением в подобной цепи электрического тока, тем более, что воздействие на стрелку прекращалось при размыкании цепи. Однако Зеебек предложил собственную интерпретацию эффекта, объясняющую его намагничиванием материалов под действием температуры и разработал в качестве ее следствия смелую гипотезу происхождения земного магнетизма, суть которой сводится к тому, что земное магнитное поле образовалось в результате разности температур между полюсами и экваториальным поясом Земли. Заблуждение Зеебека сыграло положи­тельную роль: чтобы опровергнуть электрическое про­исхождение термоэлектрических токов, он на самых раз­личных материалах сопоставлял явление электризации (контактный потенциал) или ряд Вольта с воздействием разности температур на магнитную стрелку и показывал различие между ними.

Составленный Зеебеком обширный термоэлектрический ряд (табл. 5) представляет интерес и поныне. В современных обо­значениях (α — термоэлектродвижущая сила на 1° С и σудельная электропроводность) ряд Зеебека определяется произведением ασ вместо величины α2σ/χ (где χ удельная теплопроводность), которая харак­теризует термоэлектрические свойства материала.

На основе эффекта Зеебека и создаются термоэлектрогенераторы. На рис.9 показана типичная конструкция термо­электрического генератора на основе проводников. Обычно проводники соединяются последовательно, так как разность потенциалов на выходе каждой пары проводников в реальных устройствах имеет величину порядка 300—400 мкВ на единицу, разности темпера­тур. Поэтому при разности температур 500 К выходное напряжение на каждой паре элементов составляет не более 0,2 В.

Рис. 9. Термоэлектрический генератор.

 

Работу реальных устройств сопровождают опреде­ленные необратимые явления. Возможна теплопере­дача от источника к охладителю непосредственно через элементы генератора. Внутри элементов при протекании тока выделяется джоулево тепло.

Для любой пары термоэлектрических элементов скорость теплопередачи через проводимость пропорци­ональна разности температур на их концах (при усло­вии отсутствия рассеяния тепла). Тогда справедливо уравнение

Q т = K (T1 - T 2),          (3)

где К зависит от теплопроводности материалов, пло­щади поверхности и длины элементов.

Джоулево тепло, выделяющееся при прохождении тока I, равно

Q дж = I 2 R,            (4)

Где К — общее сопротивление элементов, зависящее (как и теплопроводность) от удельного сопротивления материала, размеров и формы элементов. Если опять же предположить, что тепловые потери отсутствуют, то половина энергии, преобразованной в джоулево тепло, проходит к каждому из соединений.

Таблица 5

Термоэлектрические ряды

Ряд Зеебека (1822г.)   Ряд Юсти (1948)  

Ряд Мейснера (1955)

 

Металлы и их соединения

 

Металлы

 

Полупроводники
PbS Bi Ni Co Pd Pt U Au Cu Rh Ag Zn C Cd Сталь Fe As Sb SbZn     Bi-80 Co-21 Ni-20 K-14 Pd-8 Na-7 Pt-5 Hg-5  C-3.5 Al-1.5 Rh+1 Zn+1.5 Ag+1.5 Au+1.5 Cu+2.0 W+2.5 Fe+12.5  Sb+42 Si+44 Te+49   Bi-70 Mi-18.0 Co-18.5 K-12 Pd-6 Pb-0.1 Sn+0.1 Rh+2.5 Zn+2.9 Mo+5.9 Fe+16 Sb+35 Te+400 Se+1000  

MnS-770

ZnO-714

CuO-696

Fe3О4-500

FeS2-430

MoS-200

CuO-139

CdO-41

CuS-7

FeS+26

CdO+30

NiO+240

Mn2О3+385

Cu2O3+474

CuO+1120

 

Примечание: Величина термо-ЭДС дана в мкВ/град.

         

 

 

 

 

 

Получаемая в нагрузке мощность от такого генератора определяется из соотношения

P=S(T1-T2)I - I2R,

  где S коэффициент Зеебека зависящий от материала проводника.

Если считать неизменными другие величины, значение КПД определяется только величиной тока. Установлено, что с уменьшением тока КПД сначала растет, а затем падает. Максимальное значение КПД зависит от параметра Z характеризующего некоторую совокупность свойств проводника, называемого добротностью. Для металлов Z очень мала, поэтому для изготовления ТЭГ применяют легированные полупроводники, для которых добротность при определенных температурах не превышает 0.0005 на 1 К. Тогда при температуре нагревателя 1000 К и охладителя 300 К, общий КПД преобразования составляет лишь около 7% и то при концентрации солнечного излучения с помощью зеркал.

Несмотря на то, что КПД современных термоэлек­трических генераторов очень мал, интерес к ним про­должает расти. Если учесть, что еще несколько деся­тилетий назад КПД термоэлектрических генераторов был в 10 раз ниже достигнутого в настоящее время, а поиск новых более совершенных материалов продолжается, то можно надеяться на дальнейшее усо­вершенствование этого типа генераторов. Например, если удастся достигнуть величины добротности 0,005 на 1К в диапазоне температур от 300 до 1000 К,тоКПД генератора увеличится с 7 до 31%.

Следует заметить, что температурные изменения добротности могут благоприятно отразиться и на эф­фективности системы, состоящей из плоского коллек­тора и термоэлектрического генератора (рис. 10). Ма­ксимальная температура в данном случае значитель­но ниже, но для достаточно узкого интервала темпе­ратур можно подобрать такую пару термоэлектриче­ских материалов, которые обеспечат сравнительно вы­сокую добротность. При температуре Т= 400 К и Z =0,002 на 1 К суммарный КПД составляет около 3,5%. Если учесть, что получение такой рабочей температуры не связано с применением сложных концентраторов, снабженных устройством, следящим за движением солнца, то си­стема подобной конструкции оказывается вполне при­емлемой. Относительно низкая величина КПД си­стемы обусловлена входящим в ее состав генератором.

Рис. 10. Термоэлектрический генератор с плоским коллектором.

Из всего сказанного видно, что эффективность систем, в которых солнечная энергия используется для нагревания со­ответствующих устройств, принципиально ограничена, в результате чего полезно реализуется лишь незначи­тельная доля падающей солнечной энергии. Даже по самым оптимистическим прогнозам КПД подобных устройств не превысит 40%.

Таким образом, дальнейшее исследование устройств для преоб­разования энергии, в которых исходная стадия яв­ляется тепловой, кажется бесполезным. В одном из таких устройств, которому еще 10 лет назад отводилось важное место при решении вопросов крупномасштабного получения энергии, использован магнитогидродинамический эф­фект, или МГД-эффект, но последние исследования, а в большей степени практические реализации такого устройства показали, что его использование из-за низкого КПД неэффективно. В следующей главе будут описаны другие методы получения энергии. Их существенное отличие заключается в том, что они по­зволят использовать энергию солнечной радиации без сколько-нибудь заметного повышения температуры элементов систем, то есть тепловая стадия в процессе преобразования энергии исключается.

 


Поделиться с друзьями:

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.01 с.