Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Хранение газов. Нагревание Солнцем. Повышенное нагревание в коробке. Применение стекла

2017-05-16 491
Хранение газов. Нагревание Солнцем. Повышенное нагревание в коробке. Применение стекла 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Вокруг нас в эфире – пустота, т. е. отсутствие газов и паров. Эфирная среда не есть еще полное отсутствие материи, но эфирное вещество так разрежено, что его как бы и нет. Все же оно потоком звездных частиц и своим ритмическим волнообразным движением несет реки энергии, исходящие из небесных тел, главным образом – от Солнца. В свою очередь, и все тела, которые нас окружают, и наши собственные, живые и мыслящие, теряют через тот же эфир свою запасную энергию, свою теплоту. Мельчайшие частицы атомов тел своим колебательным движением возбуждают волнообразное движение в эфире, которое и уносит в форме невидимых или видимых лучей энергию всех тел – холодных и нагретых – в окружающее беспредельное пространство.

Каждое тело одновременно получает энергию и теряет ее. В результате устанавливается в теле определенная температура, не вполне равномерная во всех его частях и зависящая от множества усилий, находящихся в самом теле и около него: его теплопроводности, окраски или состояния поверхности от окружающих тел и их состояния и т. п.

Посмотрим сначала, что будет с телом, если устранить действие солнечных лучей. В совершенстве этого исполнить нельзя в нашей среде, где ярко блестит Солнце, но приблизительно можно. Для этого данное испытуемое тело надо затенить. Если перед ним, ближе к Солнцу, поставить несколько хорошо высеребренных полированных экранов, то солнечный свет, падая на первый экран, почти полностью будет отражаться; но все же он немного нагреет его. Лучи эти, слабые от первого экрана, падают на второй экран и также отражаются, совсем почти не нагревая второй экран и т. д. После трех, четырех отражений действие Солнца на испытуемое тело будет почти уничтожено. Экраны должны быть друг от друга на расстоянии в несколько раз большем, чем данное тело; так же и оно должно быть расположено подальше от экрана, иначе испускаемые телом лучи, отражаясь от блестящего ближайшего экрана, будут в очень большом количестве возвращаться к нему и задерживать его охлаждение. Что же будет при этом затенении тела? Не получая ниоткуда лучей, кроме звезд, лучеиспусканием которых можно пренебречь, как силой незаметной, – испытуемое тело будет только терять свою энергию, приводя, движением атомов и их частиц, эфир в ритмичное движение. Тело будет охлаждаться, и температура его, наверно, будет близка к абсолютному нулю, если – 273° Ц ниже нуля. Собственно, трудно представить себе, что будет с телом при этих условиях, так как температура на Земле никогда не была ниже –271° Ц. Эта температура была получена при испарении жидкого гелия в пустоте; при ней жидкий водород обращается в ледяшку. Что будет с телом при описанных условиях, составляет глубочайшую тайну. Даже представить себе какое-либо решение трудно: не исчезнет ли хоть отчасти тело, не сократится ли во много раз, не изменится ли разительно в своих свойствах? Не получатся ли такие свойства, каких мы даже вообразить себе сейчас не можем? Вот когда явится возможность исследовать качества тел при низкой температуре и сделать величайшие открытия! Известно пока, что при низких температурах коэффициент расширения уменьшит также и теплоемкость, а теплопроводность и электропроводность увеличатся. Вязкость часто увеличивается. Химическое сродство ослабляется.

Все же будут светить на тело звезды, да и ближайший экран будет хоть немного давать тепла. Идеального случая опять не будет, и от тела должно остаться хоть какое-нибудь подобие его. Потом и частицы эфира, даже без влияния Солнца, имеют огромную поступательную скорость движения. Остановится, вероятно, только движение центров молекул или атомов в теле. Но движение более мелких частей, из которых они состоят, останется, благодаря действию эфира.

Обратимся же к нашему практическому случаю затенения тела. Кажется, довольно и одного высеребренного с обеих сторон экрана, чтобы понизить температуру тела более, чем это можно на Земле, в лабораториях. Понятно, что газы обратятся в жидкости и отвердеют, даже лишатся способности давать какие-либо самые незначительные испарения. Таким образом, в эфире легко хранить самые летучие вещества и газы, подвергая их низкой температуре, затененных экранами пространств. Тем более, что твердые и жидкие тела легко теряют способность испарения. Жидкие, разумеется, замерзают, твердые делаются еще тверже. Но могут быть и исключения. Свойства тел не изучены достаточно при низких температурах. Одно кажется верным: уничтожение летучести всех тел и обращение со всех сторон несколькими рядами экранов, хорошо отражающих лучи, будет чрезвычайно медленно охлаждаться, даже при отсутствии Солнца. В идеальном случае оно никогда не охладится, как бы ни было горячо. Применение это имеет при путешествии между звездами, вдали от солнц.

Ясно, что при Солнце, изменяя расположение экранов, число их, свойство их поверхностей, величину их, можно получить любую температуру тела, начиная от абсолютного нуля до неизвестного максимума. Как же велик этот максимум? Займемся его определением. Экраны пока мы устраняем. Тело освещается прямо Солнцем; оно получает от этого энергию и одновременно теряет ее. Приток энергии почти постоянен, но потеря его от лучеиспускания быстро возрастает с температурой тела. Поэтому, при некоторой степени нагревания его, устанавливается равновесие, именно тогда, когда приход сравняется с расходом. Мы ищем максимум нагревания. Поэтому мы должны поставить тело в такие условия, чтобы оно как можно больше поглощало солнечной энергии и как можно меньше теряло своей собственной и заимствованной. Вообразим тело в виде тонкого кружка, расположенного перпендикулярно к солнечным лучам. Чтобы поглощение лучистой энергии Солнца было наибольшим, надо, чтобы обращенная к Солнцу поверхность кружка была покрыта сажей, вообще веществом с наибольшей поглощательной способностью. Кружок нагревается, но другая его поверхность – теневая – испускает лучи в пространство, ничего не получая взамен, если не считать слабого лучеиспускания звезд. Надо чтобы эта потеря была наименьшей.

Для этого мы высеребрим, теневую половину кружка, вообще покроем веществом, мало способным к лучеиспусканию. Можно еще заметить это лучеиспускание и почти уничтожить его несколькими задними, такими же, но с обеих сторон блестящими кружками, которые должны быть близко и параллельно расположены друг к другу. Величина их не должна быть меньше нагреваемого Солнцем кружка. Тогда формулы лучеиспускания Стефана, при расстоянии кружка от Солнца, равном расстоянию Земли от того же светила, дадут число, близкое к 150° Ц. В экваториальной части Земли Солнце нагревает почву до 85° Ц, причем атмосфера поглощает почти половину. Если бы не было этого поглощения, то получили бы, по Стефану, около 150°. Следовательно, можно верить приведенному числу. Если возьмем не пластинку, а кривую поверхность, то потеря тепла будет больше, а температура меньше. Но это еще не максимум. Можно еще увеличить эту температуру, если замедлить лучеиспускание и потерю тепла черной стороны диска, обращенной к Солнцу. Сделать это можно так. Возьмем круглую, хорошо высеребренную цилиндрическую поверхность (т. е. трубу), одну неприкрытую сторону которой обратим к Солнцу, а другую аккуратно, без промежутка, закроем нашим кружком. Одним словом, мы берем цилиндрическую, высеребренную крытую с одной только стороны коробку. Дно ее вычернено сажей, на него падают нормально лучи Солнца. Приход энергии не уменьшен, расход же замедлен тем более, чем длиннее коробка или ось этого цилиндра. Все же коробка должна быть не строго цилиндрической, а с углом между образующими в 0,5°, т. е. почти незаметным. Действительно, тепловые лучи черной поверхности дна коробки не будут расходиться во все стороны беспрепятственно, а будут выходить только узким коническим пучком, тем более тонким, чем коробка длиннее. Можно еще передний конец цилиндра закрыть стеклом, которое бы как можно лучше пропускало световые и ультрафиолетовые лучи и задерживало темные.

Тогда световые лучи, превращаясь внутри коробки (при падении на черное дно) в темные тепловые, не будут иметь обратного выхода – тепло будет поймано, как рыба в вершу, и потому будет накапливаться в коробке, а температура внутри ее повысится. Однако прозрачная середина, в виде стекла, задерживая лучи известной преломляемости, например очень малой и очень большой, т. е. инфракрасные и ультрафиолетовые, и пропуская лучи только средней преломляемости, даст меньше энергии в коробку, а потому температура ее от этого будет ниже. Если стекло таково, что перевешивает последнее обстоятельство, то стекло не будет повышать температуру. Коробкой и стеклом можно еще повысить температуру нашей камеры с 150° Ц до весьма значительной величины, не превышающей, однако, температуру Солнца, и на практике, вероятно, не очень высокой. Если коробка сравнительно не очень длинна, то мы пользуемся энергией Солнца, немного отличающейся от той, которая соответствует величине тени тела на плоскость, нормальную лучам Солнца.

Совсем другое будет при употреблении зеркал, когда лучистая энергия с большой поверхности скучивается на малой. Тогда, при благоприятных условиях, температуру тела можно довести до температуры, лишь немного меньшей температуры поверхностных частей Солнца. Эта температура в 4–5 тысяч градусов совершенно достаточна для всякого рода металлургических процессов.

Есть еще способ получения высокой температуры при экономии расходования солнечной энергии. Камера, где получается высокая температура, имеет вид шара. Внутри и снаружи она покрыта блестящей поверхностью, непроницаемой для большинства лучей. В ней есть только небольшое круглое отверстие, через которое выходит ничтожное количество тепла. Перед этим отверстием находится прозрачная для лучей чечевица с диаметром, равным диаметру шара. На нее нормально падают солнечные лучи, фокус которых попадает в отверстие сферы. Мы тут пользуемся только энергией Солнца, которую и так получил бы наш шар, если бы был открыт для лучей.

Но эта энергия имеет возможность пройти через малые отверстия, которые не позволяют терять много тепла через лучеиспускание внутренности шара. Лучи, пройдя через малые отверстия, расходятся и освещают внутри шара черный экран или помещенные внутри его растения. Тут тепло только приходит, но почти не уходит. Поэтому температура должна повышаться до весьма высокой степени и, конечно, бедные растения будут ей совершенно сожжены. Полезно употребить несколько концентрических защищающих поверхностей. Потеря тепла еще уменьшится.

Можно для той же цели употребить сферическое зеркало. Тогда отраженные им лучи также могут пройти через малое отверстие, позади сферы, где поместится и зеркало, но несколько сбоку. Можно заставить отражать лучи и переднюю часть нашей камеры. Лучи, отраженные от нее, еще раз отразятся от другого, прикрепленного к ней небольшого зеркала и тогда уже войдут в камеру. Вместо сферических стекол и зеркал можно употреблять цилиндрические, и тогда пучок лучей, в виде линии, будет входить в узкое длинное отверстие цилиндрической камеры. Тут потери тепла будут больше и температура ниже. Сферические стекла невыгодны тем, что много поглощают лучей высокой и низкой преломляемости. Кроме того, при большой их величине они чересчур массивны, т. е. толсты, что еще более задерживает лучи. Их качество – сохранять блестящую и прозрачную поверхность, – столь драгоценное в воздухе, здесь не имеет преимущества, так как тут и металлические зеркала не тускнеют. Итак, мы останавливаемся для получения высоких температур на металлических зеркалах. Их материал может отражать солнечный свет почти без потери, они могут быть поразительно легки или, вернее, не массивны в среде, где нет тяжести, влажности, кислорода и других веществ, портящих поверхность зеркал. Нагреваемые камеры, жилища, оранжереи или заводы чаще имеют вид длинных труб, а потому нагревать их удобнее цилиндрическими зеркалами, производство которых к тому же и проще – стоит только слегка изогнуть плоский лист. Особенной точности формы тут не нужно. У трубы должно быть, вдоль ее по образующей, узкое отверстие. Если цилиндр должен быть закрыт, при содержании в нем летучих тел, то края щели соединяются крепкими металлическими перемычками и промежутки между ними заделываются возможно прозрачным веществом (например, слюдой, чистым кварцем). К щели же примыкают две половины цилиндрического зеркала, обращенные вогнутостью к Солнцу, как и самая цель. Величина зеркала может быть равна среднему продольному сечению трубы, а может быть и больше его. В последнем случае температура в трубе получится еще выше. Лучи, отраженные зеркалом, образуют линейный фокус. Недалеко от него может быть установлено и соединено с трубой другое узкое и длинное, тоже цилиндрическое, но вогнутое зеркало, которое отразит фокусную линию как раз в щель. Тут она расходится в пучок и освещает ярким солнечным светом внутренность более или менее обширной трубы.

Шар или цилиндр со стеклом сферическим или цилиндрическим.

Большое вогнутое зеркало и второе малое выпуклое. Шар или цилиндр с парой зеркал – сферических или цилиндрических, с круглой или длинной прямоугольной щелью, закрытой или не закрытой прозрачной срединой. Не всегда – узкий входящий пучок, что усложняет в случае устройства оранжереи, так как требует рассеяния снега.

Для одних работ будут предпочитаться стекла, для других зеркала.

Тонкие кольцевые сферические или цилиндрические зеркала.

Когда камера мала в сравнении с зеркалом.

Итак, мы можем в эфире наблюдать тела при всякой температуре, как на Земле, даже в более широких пределах. Но чего стоит, каких громадных усилий, искусства и учености, получение на Земле температуры, близкой к абсолютному нулю или 4000° Ц! Как мала эта земная среда и как неудобна для опытов исследования тел! Здесь же это очень легко. Любые массы на любое время, без всяких затруднений, мы можем подвергнуть более низкой температуре, чем какая получена в земных лабораториях при испарении гелия в пустоте. Понятно, раз является легкая возможность для всякого получать желаемые температуры, то изучение свойств тел, в зависимости от их температуры, бесконечно уточнится и расширится.

 


Поделиться с друзьями:

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.02 с.