Лампы разные нужны, лампы всякие важны — КиберПедия 

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Лампы разные нужны, лампы всякие важны

2019-07-12 175
Лампы разные нужны, лампы всякие важны 0.00 из 5.00 0 оценок
Заказать работу

 

 

 

Около двадцати лет тому назад был издан справочник, где приводились основные данные о всех электронных лампах, когда‑либо выпущенных в мире. В этом справочнике было около 10 000 названий ламп. Почему так много? Ну, во‑первых, лампы все время совершенствовались: современный триод, например, совсем не похож на первые трехэлектродные лампы, появившиеся на свет в 1907 году. В биографии лампы можно найти несколько периодов, когда вся она или отдельные ее детали претерпевали самые серьезные изменения.

Во‑вторых, разные страны, а иногда и отдельные опасающиеся конкуренции фирмы выпускали свои собственные типы ламп, и сейчас в мире существуют десятки ламп, совершенно одинаковых по своим усилительным возможностям, но отличающихся устройством.

Наконец, третья причина – для разных радиоустройств нужны различные электронные лампы, работающие при разных анодных или накальных напряжениях, позволяющие получить большое усиление по току или большое усиление по напряжению, лампы, рассчитанные на различные виды анодной нагрузки и т. д. Так, например, среди современных отечественных ламп вы найдете около двух десятков триодов, каждый из которых имеет свои особенности. А ведь, кроме триодов, имеются другие типы усилительных ламп, и среди них существует такое же, если не большее, разнообразие. Сейчас мы попробуем разобраться в богатом ассортименте ламп, научимся отличать одну лампу от другой и в ряде случаев решать вопрос об их взаимной замене.

Наш любимец триод далеко не безгрешен – у него есть два весьма серьезных недостатка. Во‑первых, в триоде открыт путь для так называемой обратной связи, то есть для влияния выходного сигнала на входной. Анод и управляющая сетка триода образуют своего рода конденсатор, и именно через него «мощная копия» воздействует на свой оригинал. В зависимости от целого ряда обстоятельств обратная связь может усиливать входной сигнал или, наоборот, ослаблять его. В обоих случаях нормальная работа усилителя нарушается, и поэтому большую емкость между анодом и сеткой относят к недостаткам триода.

Второй недостаток триода можно было бы определить так: анодное напряжение слишком сильно управляет анодным током. Правда, наш прежний вывод о том, что анод действует на ток слабее, чем сетка, остается в силе – иначе лампа вообще не усиливала бы напряжения. И все же хотелось, чтобы переменное анодное напряжение еще меньше «вмешивалось» в дела анодного тока, чтобы полновластным хозяином здесь был только входной сигнал, поданный на сетку.

Оба недостатка триода устраняются одним ударом – между управляющей сеткой и анодом располагают четвертый электрод – так называемую экранную сетку (рис. 40, а). Также как и управляющая, это сетка только по названию, фактически она представляет собой спираль. Четырехэлектродная лампа называется тетродом – тетра по‑гречески значит четыре. Для того чтобы экранная сетка выполняла свои функции, нужно подать на нее положительное напряжение и одновременно заземлить ее через конденсатор (рис. 41).

 

 

Рис. 41

 

Положительное напряжение на экранной сетке ускоряет движение электронов, которые, пролетев сквозь нее так же легко, как и через управляющую сетку, устремляются к аноду.

Положительное напряжение на экранной сетке, для краткости мы будем называть его просто экранным напряжением или «плюсом» на экране, заметно уменьшает влияние анодного напряжения на анодный ток. Как бы ни уменьшался теперь «плюс» на аноде (на схемах для краткости пишут +А), экранная сетка продолжает делать свое дело – с постоянной силой подталкивать электроны к аноду.

Здесь необходимо отметить, что часть электронов, примерно 5–10 %, перехватывается самой экранной сеткой, и в лампе появляется экранный ток – некоторое подобие анодного тока. Экранный ток позволяет очень просто подавать напряжение на экранную сетку от анодной батареи (рис. 41, б). Дело в том, что для большого числа ламп экранное напряжение должно быть меньше анодного. Это довольно легко сделать, если подать напряжение на экранную сетку с «плюса» анодной батареи через гасящее сопротивление R2. Проходя поэтому сопротивлению, экранный ток создаст на нем какое‑то падение напряжения (закон Ома!) и в результате этого уменьшится напряжение на экранной сетке. Так, например, если напряжение анодной батареи 250 в и на гасящем сопротивлении теряется 150 в, то на экранной сетке (то есть между этой сеткой и «землей») действует остаток 100 в. Из сказанного ясно, что для того, чтобы понизить экранное напряжение, достаточно увеличить гасящее сопротивление. Довольно часто пониженное напряжение на экранную сетку подают с делителя (рис. 41, в).

Конденсатор С2 в цепи экранной сетки выполняет роль обычной развязки – он замыкает на «землю», то есть на катод, переменную составляющую экранного тока, которая появляется под действием усиливаемого сигнала. Но это далеко не все. Конденсатор в экранной цепи замыкает на «землю» также и переменные токи, которые в триоде попадали из выходной цепи во входную и таким образом создавали обратную связь. Теперь эти токи пройдут на «землю» по пути наименьшего сопротивления, то есть через емкость анод – экранная сетка, и через развязывающий конденсатор. Так экранная сетка защищает управляющую от анода.

Несмотря на очевидные достоинства, тетрод не получил широкого распространения, а в современных приемниках он не применяется вообще. Причиной этому одно весьма неприятное явление с довольно громоздким названием «динатронный эффект».

Когда электроны с большой скоростью врываются в анод, то они выбивают из металла другие, так называемые вторичные электроны. Казалось бы, что эти электроны, так же как и основные, первичные, должны вернуться обратно на анод под действием положительного напряжения. Однако так бывает не всегда.

Поскольку на нагрузке действует переменное (выходное) напряжение, то меняется напряжение и на аноде – об этом мы уже говорили не раз. В некоторые моменты времени напряжение на аноде может уменьшиться очень сильно, буквально до нескольких вольт, и анод почти совсем перестанет притягивать электроны. В эти тяжелые минуты большую помощь аноду оказывает экранная сетка – именно она поддерживает анодный ток, подталкивает электроны к ослабевшему аноду.

Но беспредельно уменьшать анодное напряжение нельзя. Наступает такой момент, когда лампа вдруг перестает нормально работать, ее анодный ток резко уменьшается, а экранный – возрастает. Что же случилось? Кто виновник катастрофы? Оказывается, когда напряжение на аноде становится значительно меньше, чем на экранной сетке, та начинает «затягивать» вторичные электроны, которые создают встречный ток, направленный против основного анодного тока. Это явление и называется динатронным эффектом.

Для того чтобы спасти тетрод, устранить в нем динатронный эффект, применяют так называемую лучевую конструкцию лампы (рис. 40, б). С помощью довольно простых приспособлений заставляют электроны двигаться от катода к аноду не широким фронтом, как в обычной лампе, а узкими, острыми лучами. Эти электронные лучи как бы отталкивают к аноду вторичные электроны и таким образом предотвращают динатронный эффект.

Лучевой тетрод – весьма распространенный тип усилительных ламп, но еще большей популярностью пользуется пентод – пятиэлектродная лампа (рис. 40, в). Пятый электрод – это еще одна, третья по счету сетка, расположенная вблизи анода. Эта сетка, которую называют пентодной или антидинатронной, всегда соединена с катодом либо внутри баллона, либо на ламповой панельке. Именно подключение к катоду позволяет пентодной сетке успешно бороться с динатронным эффектом.

 

 

Рис. 40

 

Если вы живете на втором этаже, а ваш товарищ на первом, то справедливо сказать, что вы живете выше его или, наоборот, что он живет ниже вас. Когда мы говорим, что на аноде «+» относительно катода, то это одновременно значит на катоде «–» относительно анода. Пентодная сетка соединена с катодом, и поэтому на ней также действует «–» относительно анода. Именно этот «минус» отталкивает обратно к аноду вторичные электроны, ставит для них непреодолимый барьер на пути к экранной сетке. Что же касается основных, первичных электронов, то они практически не успевают «почувствовать» отрицательного напряжения на пентодной сетке и с большей скоростью пролетают сквозь нее, попадая на анод.

Кроме обычных усилительных ламп – триода, лучевого тетрода и пентода, в приемнике применяются еще некоторые специальные лампы. Из них мы рассмотрим только одну – гептод, лампу с семью электродами (рис. 40, г). Она является своеобразным объединением двух пентодов. Как и в обычном пентоде, в этой лампе есть анод, катод и антидинатронная сетка, но кроме них, в гептоде еще имеются две управляющие и две экранные сетки. Конструктивно гептод выполнен так же, как и все остальные лампы, – его сетки – это проволочные спирали, навитые на траверсах и расположенные вокруг катода на различных расстояниях от него. Одна из экранных сеток находится на своем обычном месте рядом с пентодной, а вторая – между управляющими сетками. Обе экранные сетки соединены внутри баллона и имеют общий вывод – к ним подключается один конденсатор и одно гасящее сопротивление.

Что же касается управляющих сеток, то выводы у них отдельные и потому анодным током гептода могут одновременно управлять два входных сигнала.

* * *

 

ЛАМПЫ ВМЕСТО ЛАМП

Неприятности случаются, как правило, в самые неподходящие моменты. В разгар праздничного вечера вдруг сгорает в радиоле лампа. В этой трагической ситуации вы принимаете смелое решение – забраться в телевизор и извлечь оттуда какую‑либо лампу для замены сгоревшей. Но какую?..

Заменить лампы без каких‑либо переделок и монтажа можно лишь в том случае, если эти лампы имеют одинаковые цоколевки. Однако этого еще недостаточно. Лампы должны иметь близкие основные параметры и рекомендованные режимы работы. Ниже приводится короткий список, в котором указаны группы взаимозаменяемых ламп.

5ЦЗС, 5Ц4М, 5Ц4С

6С2С, 6С5С, 6Е5С

6Н8С, 6Н9С

6Г1, 6Г2

6Ж1П, 6ЖЗП, СК1П

6Ж4П, 6К4П

6Ж7, 6К7.

6Ж4, 6Ж8.

6Г16С, 6Ф6С, 6ПЗС,

6П14П, 6П18П

Это, конечно, далеко не полный список, но даже им пользоваться нужно умело. Так, например, замену выходных ламп на менее мощные, допустим 6ПЗС на 6П6С, можно производить совершенно спокойно. В то же время обратная замена может вызвать перегрузку выходного и силового трансформатора, а значит, и их перегрев. Оптический индикатор настройки может заменить триод, но совершенно ясно, что никакому триоду не «взять» на себя функции лампы 6Е5С. В то же время приведенный список можно легко дополнить. Так, в частности, пентоды из группы 6Ж1П могли бы заменить пентоды из группы 6Ж4П там, где пентодная сетка соединена с катодом на ламповой панельке. При этом условии к группе 6П14П, 6П18П можно было присоединить еще 6П13. Вы уже догадались, что в этой лампе, так же как и в 6К4П, пентодная сетка не соединена с катодом внутри баллона и имеет отдельный вывод на цоколь. Вместо выходных ламп из группы 6ПЗС можно использовать триоды 6С2С, 6С5 и даже лампу 6Е5С, но выходная мощность при этом резко уменьшится.

Во многих случаях замена одного типа ламп другими может пройти безболезненно. И все же по возможности такой замены следует избегать.

 

* * *

Основными особенностями различных типов ламп, например различных пентодов или триодов, являются их типовые, то есть рекомендованные режимы, основные усилительные параметры, конструктивное выполнение, так называемая цоколевка – схема подключения электродов к контактным ножкам цоколя, а также некоторые особенности, связанные с различным назначением ламп.

Основные режимы лампы – это напряжения на ее электродах и соответствующие им токи. В конце этой книги вы увидите цоколевки распространенных отечественных ламп. Возле каждого электрода указан его типовой режим, а рядом с лампой – некоторые ее параметры – крутизна характеристики S, внутреннее сопротивление R1, коэффициент усиления μ и для некоторых ламп выходная мощность и Р вых и оптимальное сопротивление нагрузки Ra. В числе параметров можно встретить и допустимую мощность рассеивания на аноде Ра. Для комбинированных ламп, например 6И1П, иногда указывают параметры отдельных частей (например, триода и гептода).

Говоря о режимах, нужно прежде всего разделить лампы на две группы – батарейные, предназначенные специально для приемников с питанием от батарей, и сетевые для приемников с питанием от обычной сети переменного тока.

Все батарейные лампы имеют катод прямого накала[4], причем напряжение накала и накальный ток весьма малы. В большинстве новых ламп напряжение накала 1,2 в, а в более старых типах – 2 в. Особой является лампа 2П1П (2П2П), у которой две нити накала. При последовательном их соединении к лампе нужно подвести напряжение канала 2,4 в. при параллельном соединении – 1,2 в. Анодное напряжение у батарейных ламп также невелико – обычно 60–90 в. Практически они работают и при более низких напряжениях, вплоть до 20–30 в.

Напряжение накала всех сетевых ламп – 6,3 в. Эта величина не является случайной, она учитывает возможность питания ламп от аккумуляторов. Три соединенные последовательно кислотных аккумулятора как раз и дают напряжение 6,3 в. Имеются сетевые лампы с напряжением 12.6, 30 и даже 50 в, но мы о них говорить не будем, так как они широкого распространения не получили.

Для большинства сетевых приемных радиоламп принято анодное напряжение 250 в, однако в реальных приемниках лампы часто работают при пониженном напряжении, вплоть до 200–150 в. Это несколько ухудшает усилительные характеристики ламп, но зато заметно снижает потребляемую мощность и упрощает систему питания. Экранное напряжение в этом случае занижено пропорционально анодному и лежит в пределах 30–150 в вместо номинальных 100–250 в. Нужно сказать, что некоторые отклонения анодных и экранных напряжений от номинала не очень заметно влияют на работу приемника. Значительно хуже обстоит дело с напряжением накала. Даже небольшой, на 10–15 % перекал катода резко сокращает срок его службы, приводит к преждевременному разрушению активного слоя. В то же время недокал ухудшает усилительные свойства лампы. Некоторые типы ламп в некоторых схемах при недокале на 20–25 % совсем перестают выполнять свои функции.

Среди режимов ламп можно встретить и величины токов – накального, анодного, экранного. Токи эти в основном определяются напряжениями на электродах, однако зависимость здесь не всегда простая. Так, например, если уменьшить напряжение накала, то одновременно уменьшатся все токи лампы. Понижение экранного напряжения влечет за собой уменьшение не только тока экранной сетки, но и анодного тока.

Сильно влияет на ток в баллоне смещение – постоянное напряжение на управляющей сетке. Его величина также, как правило, указывается среди рекомендованных режимов.

Сравнивая анодные токи различных ламп, вы, очевидно, обратили внимание на две явно выраженные группы. У одних ламп анодный ток весьма мал, что‑нибудь 2–10 ма, а у ламп другой группы анодный ток составляет несколько десятков миллиампер. Это так называемые выходные лампы. Их главное назначение – создавать сравнительно мощный, до нескольких ватт, выходной сигнал, который мог бы привести в движение диффузор громкоговорителя. Поскольку все лампы в приемнике работают примерно при одинаковых напряжениях, то значительную мощность выходная лампа может развить только за счет сравнительно большого тока. У этих ламп заметно повышен и ток накала для того, чтобы можно было получить достаточную эмиссию электронов с катода. Выходные лампы – это, как правило, пентоды или лучевые тетроды и сравнительно редко триоды.

Среди ламп, от которых не требуется значительной мощности, наиболее широко распространены пентоды для усиления напряжения высокой и низкой частот. Об усилительных свойствах таких ламп довольно ясно говорит крутизна их характеристики. Мы уже отметили, что при изменении напряжения на сетке меняется анодный ток лампы. Более четко об этом как раз и говорит крутизна – она указывает, на сколько миллиампер меняется анодный ток при изменении напряжения на сетке на 1 в. Так, в частности, лампа с крутизной 5 ма/в в типичной схеме усилителя высокой частоты даст усиление сигнала в 2 раза больше, чем лампа с крутизной 2,5 ма/в.

Все маломощные пентоды принято делить на две основные группы – с постоянной и переменной крутизной. У ламп второй группы крутизна зависит от напряжения смещения – чем больше отрицательное напряжение на сетке, тем меньше крутизна, тем меньше усиливает лампа. Это дает возможность осуществить автоматическую регулировку усиления, с которой мы познакомимся в конце книги.

Для усиления низкой частоты широко применяются и триоды. Часто их объединяют по два в одном баллоне, а лампа тогда называется двойной триод. Встречаются и другие комбинированные лампы, в частности, триод – пентод, триод – гептод и другие.

Специальные типы триодов и двойных триодов предназначены для работы на ультракоротких волнах. Нужно сказать, что с увеличением частоты, то есть с уменьшением длины волны, условия работы лампы резко изменяются. Прежде всего это связано с огромной скоростью всех процессов – уже на частоте 100 Мгц (волна 3 м) период колебаний длится всего сотую микросекунды! Электроны не всегда, точнее не во всех лампах, поспевают за столь быстрым изменением сигнала.

Кроме того, с увеличением частоты резко возрастает значение лаже самой маленькой индуктивности и емкости. Так, например, сравнительно небольшой проводник на метровых волнах ведет себя так же, как на длинных волнах вела бы себя катушка индуктивности, имеющая несколько десятков витков. Все это заставляет применять для УКВ‑диапазона специфические схемы и методы монтажа, специальные усилительные лампы.

Рассматривая различные типы ламп, мы забыли о самой простой, о диоде. Электровакуумный диод, так же как и полупроводниковый, имеет всего два электрода – катод и анод. Оба диода обладают совершенно одинаковой «квалификацией» – они умеют пропускать ток только в одну сторону и поэтому могут работать в детекторе. С помощью диодов можно делать «и кое‑что другое», но об этом вы узнаете уже в следующей главе.

О лампе можно кое‑что узнать и по ее названию. Так, первая цифра указывает напряжение накала в вольтах, следующая за ней буква говорит о типе лампы. При этом приняты следующие обозначения: А – гептод, Б – диод (двойной диод) – рентод, Г – диод (двойной диод) – триод, Е – оптический индикатор настройки, Ж – маломощный пентод, К – пентод с удлиненной характеристикой, или, иначе, с переменной крутизной, И – триод‑гептод, Н – двойной триод, П – мощный (выходной) пентод или лучевой тетрод, С – триод, Ф – триод‑пентод (кроме пентода 6Ф6С), X – двойной диод, Ц – кенотрон, Э – тетрод.

Третий элемент обозначения – цифра. Это уже конкретный тип, разновидность указанного перед этим общего типа.

Так, например, все выходные лампы обозначаются буквой П, но выходных ламп имеется несколько типов, и цифра, следующая после буквы П, как раз и говорит о том, к какому из них относится данная лампа. В частности, лампы 6П1П, 6П18П, 6П14П – это все выходные лампы, но лампы, конечно, разные.

Наконец, четвертый, последний элемент обозначения указывает некоторые конструктивные особенности лампы. Буква С говорит о том, что лампа стеклянная, Р – сверхминиатюрная (диаметр 4 мм), П – пальчиковая, А и Б миниатюрная (диаметр 6 и 10 мм) и т. д.

Среди огромного множества электронных ламп можно выделить группы, в которых одни лампы можно заменять другими даже без всякой переделки радиоаппарата (стр. 124). Если же пойти на изменение монтажа (например, замена типа панельки) или на изменение схемы (например, подбор гасящих сопротивлений), то список взаимозаменяемых ламп можно значительно расширить.

 

Вопросы питания

 

 

 

Вы едва успели попасть в столовую буквально за несколько минут до закрытия. Сердитый официант на все вопросы отвечает довольно однообразно. «Первого нет… Второго нет… Закусок нет уже давно… Что же есть? Только компот…» Что поделаешь! Приходится брать пять стаканов компота. Раз в жизни можно и так пообедать…

А вот с электронной лампой подобный номер не пройдет – ей обязательно подавай полноценный обед и, как минимум, из двух блюд. На первое – полную порцию напряжения накала, на второе – анодное напряжение. Напряжение на экранную сетку и смещение на управляющую обычно можно выкроить из анодного питания (рис. 39, б и 41, б, в).

Когда речь идет о питании батарейного приемника, все обстоит сравнительно просто. Нужно иметь две батареи: накальную – низкого напряжения, способную отдать сравнительно большой ток, и анодную – с напряжением в несколько десятков вольт, от которой потребляется ток несколько десятков миллиампер. Иногда к этому обязательному «меню» добавляют еще и третье блюдо – батарею сеточного смещения.

Намного сложнее решаются вопросы питания ламповых радиоприемников, когда поставщиком энергии является электрическая сеть переменного тока. Здесь приходится решать сразу две проблемы. Во‑первых, нужно из имеющегося стандартного напряжения 127 или 220 в получить пониженное напряжение накала, как правило, 6,3 в и повышенное анодное напряжение 150–250 в.

Что касается накала ламп, то подогревные катоды можно питать непосредственно переменным током. Если бы мы пропустили переменный ток через тонкую ниточку катода прямого канала, то работу приемника сопровождал бы сильный гул, как его называют, фон переменного тока. Частота переменного тока в сети – 50 гц. Это значит, что 100 раз в секунду как во время положительной, так и во время отрицательной амплитуды накального тока будет происходить некоторый подъем температуры катода. Из‑за этих пульсаций температуры будет пульсировать ток эмиссии, а значит, и анодный ток лампы. В результате в анодных цепях всех ламп появится мешающий сигнал – фон, который будет воспроизведен громкоговорителем в виде грубого низкого тона.

Совсем иначе обстоит дело в подогревных лампах. Во‑первых, здесь вся конструкция катода более массивна и поэтому обладает значительной тепловой инерцией. Катод не успевает остывать и нагреваться при быстрых изменениях сетевого тока, и температура его практически остается постоянной. Этому, конечно, способствует и то, что нить накала отделена от самого катода.

Итак, накальные цепи сетевых ламп можно питать переменным током. Но где взять необходимое для этого низкое напряжение? Вы уже, наверное, догадались, что его можно получить с помощью трансформатора.

Впервые мы встретились с трансформатором, когда говорили о входных цепях приемника (стр. 97). Здесь мы отметили лишь качественную сторону процесса – переменный ток в первичной обмотке создает переменное магнитное поле, и оно наводит переменное напряжение (точнее э. д. с. взаимоиндукции) во вторичной обмотке. Теперь несколько слов о количественных соотношениях.

Одна из главных характеристик трансформатора – это его коэффициент трансформации – цифра, показывающая, во сколько раз число витков во вторичной обмотке больше, чем в первичной. Предположим, что коэффициент трансформации равен единице, то есть обе обмотки одинаковы. В этом случае на вторичной обмотке наведется такое же напряжение, какое подводится к первичной, – подаем на вход трансформатора один вольт и на выходе также получаем один вольт. Совсем другое дело, если обмотки разные – тогда выходное напряжение не равно входному. Если коэффициент трансформации больше единицы (такой трансформатор называется повышающим), то напряжение на выходе больше, чем на входе. В понижающем трансформаторе, где коэффициент трансформации меньше единицы, все наоборот – выходное напряжение меньше входного.

Для того чтобы закончить с этим вопросом, рассмотрим два примера. Первичная обмотка содержит 200 витков, вторичная – 1000 и, следовательно, коэффициент трансформации 5. Подав на вход напряжение 10 в, мы получим на выходе 50 в, то есть в 5 раз больше. При коэффициенте трансформации 0.2, например, при соотношении витков 200 и 40 выходное напряжение будет в 5 раз меньше входного, то есть 1 в. Необходимо отметить, что трансформатор – машина обратимая. Повышающий трансформатор становится понижающим, а понижающий повышающим, если подвести напряжение ко вторичной обмотке, а снимать его с первичной.

В приемнике имеются как минимум два трансформатора, и тот из них, который используется в блоке питания, называется сетевым, или силовым. В нем, конечно, есть первичная обмотка, к которой подводится напряжение из сети переменного тока. Вторичных обмоток в силовом трансформаторе несколько, и среди них – понижающая обмотка, которая дает напряжение 6,3 в для питания накальных цепей. Прежде чем говорить об обмотках силового трансформатора, несколько слов о его устройстве.

Высокочастотный трансформатор, с которым мы встретились во входной цепи приемника, представлял собой довольно простую конструкцию – две обычные катушки, расположенные на сравнительно небольшом расстоянии одна от другой. На низких частотах такая система уже работать не сможет. Для того чтобы это стало понятным, вам придется задуматься над вопросом, сколько витков должно быть в той или иной обмотке трансформатора? Представьте себе трансформатор, повышающий напряжение от 1 в, скажем, до 5 в. Ведь построить такой трансформатор можно с самым различным числом витков в обмотках, например 1 и 5, 200 и 1000, 50 и 250 и т. д. Как видите, коэффициент трансформации во всех случаях одинаков, а число витков разное. Так из чего же все‑таки исходить при выборе числа витков?

Казалось бы, над таким вопросом и думать нечего – витков надо брать как можно меньше, например 1 и 5. Во‑первых, это даст огромную экономию дорогого медного провода, во‑вторых, уменьшит габариты трансформатора, в‑третьих, упростит его конструкцию, в‑четвертых… Но, пожалуй, не стоит перечислять достоинства, делить шкуру медведя, который еще не убит.

Всю энергию, которая подводится к первичной обмотке, можно разделить на две части. Часть энергии теряется в самой обмотке, затрачивается на преодоление ее сопротивления.

Другая часть энергии создает магнитное поле и с его помощью перекочевывает во вторичную обмотку. Здесь‑то и находится главный потребитель, например нити накала ламп. Для того, чтобы во вторичную обмотку передавалось как можно больше энергии, а в первичной терялось как можно меньше, нужно, чтобы обычное, или, как его еще называют, активное сопротивление обмотки было небольшим по сравнению с ее индуктивным сопротивлением, которое характеризует отбор энергии на создание магнитного поля. Знакомясь с фильтрами, мы отмечали, что индуктивное сопротивление катушки зависит от ее индуктивности и частоты переменного тока. Чем больше индуктивность и чем больше частота, тем больше индуктивное сопротивление катушки.

Естественно, что для получения большого индуктивного сопротивления обмоток трансформатора на низкой частоте нужно делать эти обмотки с очень большим числом витков. Если бы мы захотели строить силовой трансформатор по образцу высокочастотного, то, наверное, должны были бы делать обмотки с десятками, а может быть, и с сотнями тысяч витков. К счастью, есть другой способ повысить индуктивность – применить уже знакомый нам стальной сердечник.

* * *

 

«ГРУЗОВИКИ» И «ЛЕГКОВЫЕ»

Большая семья автомобилей далеко не однородна. Здесь вы найдете и 25‑тонный самосвал‑гигант, и вездеход с передними ведущими колесами, и маленький юркий «Запорожец». Однако какую бы систему классификации автомобилей мы ни придумывали, придется обязательно выделить две основные группы – грузовики и легковые машины. Точно так же в огромном семействе полупроводниковых вентилей выделяются две похожие и в то же время отличные друг от друга группы точечных и плоскостных диодов.

Плоскостные диоды – это своего рода грузовики – они предназначены в основном для выпрямителей, пропускают довольно большой ток и выдерживают значительные обратные напряжения. Подобная нагрузка определила и конструкцию этих приборов – в них анод и катод, то есть соответственно зона р и зона n. имеют большую поверхность. Вот почему такие диоды называются плоскостными. В то же время рn ‑переход плоскостного диода – это не что иное, как конденсатор, и с весьма внушительной емкостью – десятки и сотни пф. Если включить плоскостной диод в высокочастотную цепь, например в цепь детектора, он практически не будет выполнять своей основной обязанности – выпрямлять переменный ток. Не обращая внимания на диод‑вентиль, сигнал легко пройдет через диод‑конденсатор.

В высокочастотных выпрямителях и детекторах работают « легковые ». точечные полупроводниковые диоды. Основа такого диода маленький кристалл германия или кремния, к которому примыкает тонкая металлическая игла. Возле нее и образуется «миниатюрный» рn ‑переход с очень небольшой емкостью. Вот некоторые данные некоторых плоскостных и точечных диодов.

 

 

 

 

По принятой в настоящее время новой системе обозначения, название всех типов полупроводниковых диодов начинается с буквы Д – диод. Далее следует цифра, в какой‑то степени отражающая особенности диода:

от 9 до 99 – точечные германиевые,

от 101 до 199 – точечные кремниевые,

от 201 до 299 – плоскостные кремниевые,

от 301 до 399 – плоскостные германиевые,

от 401 до 499 и от 601 до 699 – специальные типы точечных диодов.

Кроме того, имеются еще и диоды особого назначения, своего рода пожарные или санитарные автомобили. Это диоды – стабилизаторы напряжения, диоды – переменные конденсаторы и, наконец, туннельные диоды, которые сами усиливают и генерируют электрические колебания.

 

* * *

Сердечник трансформатора собирается из стальных пластин, похожих на букву Ш (рис. 42, а, в). К каждой такой пластине примыкает стальная полоска. В результате после сборки получается стальной пластинчатый брус с двумя большими окнами. На средний стержень одевается каркас с обмотками, расположенными одна поверх другой (рис. 42, б).

 

 

Рис. 42

 

Кстати, ширина среднего стержня в миллиметрах входит в название типа пластин. Ш‑32, например, означает, что пластины имеют Ш‑образную форму и ширина среднего стержня равна 32 мм. Главной же характеристикой сердечника является его сечение, точнее сечение среднего стержня, которое, естественно, можно получить, умножив его ширину на толщину набора пластин. Сечение сердечника, его размеры, а значит и габариты всего трансформатора, зависят от аппетитов потребителей. Чем больше мощность, потребляемая от трансформатора, тем больше должен быть его сердечник.

Раз уж мы заговорили о мощности, то придется отметить очевидный факт: если сложить все мощности, потребляемые во всех вторичных обмотках, то как раз получится та мощность, которую сам трансформатор потребляет от сети и на которую должна быть рассчитана первичная обмотка. Теперь, по‑видимому, нужно пояснить, что это значит: рассчитать обмотку на какую‑либо мощность. Мощность – это произведение тока на напряжение (рис. 10). Если трансформатор потребляет от сети мощность 60 вт при напряжении 120 в, то в первичном обмотке протекает ток 0,5 а. Вот эта величина и является исходной для расчета обмотки, точнее для выбора провода.

Ток, проходя по проводнику, нагревает его. Чтобы проводник не накалился, как спираль электроплитки, и не сгорел, как плавкий предохранитель, он должен хорошо отдавать тепло, иметь достаточно большую поверхность охлаждения. Это одна из причин, по которой диаметр провода для той или иной обмотки трансформатора выбирается, исходя из величины тока – чем больше ток, тем толще должен быть провод. Так, например, накальная обмотка (так для краткости называют обмотку накала ламп) всегда выполняется довольно толстым проводом, диаметром 1–2 мм. Кстати, диаметр провода указан в его названии. Так, провод ПЭ 0,14 имеет диаметр 0,14 мм, ПЭ 1,2 – диаметр 1,2 мм и т. д. Буквы ПЭ означают «провод эмалированный». Часто применяются разновидности этого провода – ПЭЛ, лакостойкий, и ПЭВ, покрытый винифлексной эмалью. В большинстве случаев эти провода взаимозаменяемые.

В силовом трансформаторе должно быть как минимум две сетевых обмотки, точнее две секции сетевой обмотки, одна, рассчитанная на напряжение 127 в, другая – на 220 в. В первой из них число витков меньше, чем во второй, а диаметр провода больше. Это объясняется очень просто. Когда мы переключаем приемник с 220 в на 127 в, то, чтобы не уменьшились выходные напряжения, необходимо примерно в 1,7 раза увеличить коэффициент трансформации (220:127 = 1,7). Сделать это можно двумя путями – либо увеличить в 1,7 раза число витков всех вторичных обмоток, либо уменьшить в 1,7 раза число витков первичной обмотки. Поскольку вторичных обмоток несколько, а первичная одна, всегда производят необходимые переключения только в сетевой обмотке. Секция, рассчитанная на 127 в, естественно, выполнена более толстым проводом – мощность, потребляемая приемником, всегда одинакова, а значит при меньшем напряжении потребляется больший ток.

Если вы посмотрите на схемы приемников, то увидите, что специальной секции для сети 220 в не делают. К обмотке, рассчитанной на 127 в, просто добавляется секция, рассчитанная на 93 в. В итоге получается необходимая обмотка для сети 220 в (рис. 42, г). В некоторых приемниках можно встретить «хитрую» систему переключения сетевых обмоток (рис. 42, д).

Хитрость состоит в том, что имеются две намотанные сравнительно тонким проводом секции на 127 в каждая, которые включаются параллельно, что равносильно применению провода с удвоенной площадью поперечного сечения (рис. 42, е).

У каждой из секций есть участки, рассчитанные на 110 в, которые при напряжении 220 в включаются последовательно (рис. 42, ж). Таким образом удается обойтись без отдельной секции на 93 в, сэкономить провод, уменьшить габариты трансформатора.

Заканчивая наш короткий рассказ о силовом трансформаторе, хочется отметить, что хотя он и не неженка – работает при температуре до 60–70 градусов, – но все же боится перегрева и перегрузки. Перегрев, а он как раз и возникает из‑за перегрузок, может привести к разрушению тонкой эмалевой изоляции обмоточных проводов и к короткому замыканию между соседними витками или соседними слоями провода. А междувитковое замыкание означает дальнейший сильный нагрев трансформатора (вплоть до температуры накаленного утюга) и даже полный выход его из строя.

Опасность, связанная с междувитковым замыканием, станет вам понятной, если попытаться представить себе последствия короткого замыкания какой‑либо обмотки. В этом случае по обмотке идет очень большой ток и она потребляет чрезмерно большую мощность. Из‑за этого возрастает общая потребляемая мощность, а значит и ток в первичной обмотке. То же самое произойдет, если случайно замкнется часть какой‑либо обмотки или даже два соседних витка. Из‑за недопустимо больших токов обмотки сильно нагреваются и трансформатор горит.

Между прочим, от всех этих неприятностей прекрасно предохраняет маленький дешевый предохранитель, если, конечно, его не заменили толстой проволокой – «жучком» или даже другим предохранителем, пох


Поделиться с друзьями:

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Кормораздатчик мобильный электрифицированный: схема и процесс работы устройства...

Поперечные профили набережных и береговой полосы: На городских территориях берегоукрепление проектируют с учетом технических и экономических требований, но особое значение придают эстетическим...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.08 с.