При производстве работ на предприятиях — КиберПедия 

Археология об основании Рима: Новые раскопки проясняют и такой острый дискуссионный вопрос, как дата самого возникновения Рима...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

При производстве работ на предприятиях

2018-01-13 218
При производстве работ на предприятиях 0.00 из 5.00 0 оценок
Заказать работу

ДОРОЖНОГО КОМПЛЕКСА

Технологические процессы переработки сырья и изготовления

Готовой продукции

Негативные последствия функционирования транспорта обуславливают необходимость усиления работы по охране окружающей среды и природопользованию как со стороны государства, так и общественности.

Производственные предприятия дорожного комплекса обязаны обеспечивать проведение мероприятий по охране окружающей среды и рациональному использованию природных ресурсов. В результате работы производственных предприятий концентрация загрязняющих веществ, выбрасываемых в атмосферу, не должна превышать установленных предельно допустимых концентраций (ПДК) загрязняющих веществ в атмосферном воздухе населенных пунктов на границе санитарно-защитной зоны данного предприятия.

Требованиями СН 245 – 71 предусмотрено, что производственные предприятия дорожного комплекса должны быть отделены от жилой застройки санитарно-защитными зонами. Размеры этих зон для основных предприятий приведены в таблице 1.1.

Таблица 1.1

Санитарно-защитные зоны предприятий дорожного хозяйства

Тип предприятия Класс по санитарной классификации Ширина санитарно-защитной зоны, м Нормативный документ
Асфальтобетонные заводы: - стационарного типа - инвентарного типа     III II     СН 245-71 «Санитарные нормы проектирования промышленных предприятий» М.: Стройиздат,
Цементобетонные заводы IY  

Территория санитарно-защитных зон должна быть благоустроена газоустойчивыми породами деревьев и кустарников по проекту благоустройства, разрабатываемому одновременно с основным проектом строительства. Со стороны жилого массива ширина полосы насаждений должна быть не менее 50 м, а при ширине до 100 м – не менее 20 м.

Загрязненные воды, отводимые от производственных объектов, административных, хозяйственно-бытовых зданий и сооружений, а также ливневые стоки с территории производственного предприятия не должны сбрасываться в поверхностные водные объекты без предварительной очистки.

Предприятия должны иметь специальные участки для мойки подвижного состава, узлов и деталей, исключающих сток неочищенных вод в поверхностные водоемы, почву.

Моечные установки должны иметь очистные сооружения, обеспечивающие соблюдение нормативов ПДС.

Содержание загрязняющих веществ в почвах вне санитарно – защитной зоны или полосы отчуждения дорожного предприятия не должно превышать ПДК. Перечень основных загрязняющих веществ предприятий приведен в таблице 1.2.

Таблица 1.2

Перечень основных загрязняющих веществ, выделяемых транспортными

предприятиями и их предельно допустимые концентрации в почве

№ п/п Наименование вещества Величина ПДК (мг/кг) почвы с учетом фона
  Ацетальдегид  
  Бенз(а)пирен 0,02
  Бензин 0,1
  Бензол 0,3
  Ванадий  
  Ванадий + марганец 100,04 -1000,0
  ГХЦГ (гексахлоран) 0,1
  Ксилолы (орто -, мета-, пара -) 0,3
  Мышьяк 2,0
  Ртуть 2,1
  Свинец 32,1
  Свинец + ртуть 120,0 –1,0
  Элементарная сера 160,0
  Сероводород 0,4
  Серная кислота 160,0
  Толуол 0,3
  Формальдегид 7,0

Производственные отходы должны храниться в специально отведенном на территории предприятия месте в количествах, согласованных с местными органами исполнительной власти и территориальными органами Минприроды России. По мере накопления отходы должны утилизироваться или вывозиться в места, специально установленные для хранения.

Предприятия, имеющие свои емкости для хранения и заправки транспортных средств топливно-смазочными материалами, должны организовать приемку и выдачу материалов так, чтобы исключить возможность их попадания в канализацию, водоемы и почвы.

Выгрузку, складирование и внутризаводское транспортирование пылевидных материалов необходимо производить механизировано. При ручных работах с этими материалами, что допускается в порядке исключения, должны быть разработаны мероприятия против пыления - как правило, это гидроорошение материалов.

При хранении каменных материалов должны быть предусмотрены мероприятия по предотвращению размыва дождевыми и талыми водами и выноса материала в водотоки.

Основными мероприятиями по снижению воздействия на окру­жающую среду на предприятиях по переработке сырья и получению энергоресурсов являются следующие:

1. Поддержание в исправном, герметичном и чистом состоянии аппаратуры и оборудования технологических установок, резервуа­ров с нефтью и нефтепродуктами, трубопроводов и межцеховых коммуникаций; применение ингибиторов коррозии.

2. Исключение сжигания на факелах газов и использование их в печах технологических установок.

3. Минимальный возврат на переработку некондиционного про­дукта, предупреждение его получения.

4. Создание на крупных предприятиях системы промышленной теплофикации, обеспечивающей максимальное использование вторичных энергоресурсов (теплоты конденсата, пара вторичного вски­пания) и сокращение потребления теплофикационной воды от ТЭЦ и котельных.

5. Повышение КПД теплотехнических печей за счет улучшения контроля за режимом сжигания топлива и оснащения их утилизаци­онным оборудованием (котлами-утилизаторами, воздухоподогрева­телями, экономайзерами).

6. Повторное использование материалов в виде лома черных и цветных металлов, пластмасс и регенерируемых эксплуатационных материалов. Значительная часть этих материалов в виде твердых и жидких отходов выбрасывается.

На предприятиях по производству дорожно-строительных мате­риалов в местах значительных выделений в атмосферный воздух больших объемов твердых частиц и других вредных веществ защита окружающей среды обеспечивается:

 

Ø применением эффективных очистных аппаратов и соблюде­нием регламентов их работы;

Ø снижением производительности оборудования при особо опасных метеоусловиях;

Ø сокращением вредных производств.

 

Для снижения энергозатрат и выбросовпри производстве дорожно-строительных материалов рекомендуются следующие мероприя­тия:

1. Замена электроподогрева на локальный разогрев (змеевиком) в случае хранения битума в стальных емкостях при тепловой обра­ботке битума на АБЗ дает экономию энергии до 13 МДж/т а/б смеси.

2. Хранение минеральных материалов (песка и щебня) в услови­ях, исключающих воздействие на них погодных факторов (на закры­тых складах), способно уменьшить рас­ход мазута при их сушке на 30—40 %, ибо высушивание пористого материала (щебня из известняка, песчаника) от влажности 10% до влажности 1 % требует энергозатрат 350—660 КДж/кг.

3. Соблюдение регламента технического обслуживания; модер­низация конструкции мазутных горелок обеспечивает уменьшение расхода мазута на 10—15 %, т. е. до 8—10 кг на 1 т асфальтобетон­ной смеси.

4. Использование щебня из изверженных пород, а не из осадоч­ных дает экономию энергоресурсов на сушку в 1,1—1,9 раза.

5. Снижение материало- и энергоемкости машин и механизмов при увеличении их производительности.

6. Использование нетрадиционных экологически безопасных ис­точников энергии при подготовке и приготовлении смесей на АБЗ.

Для очистки воздуха от аэрозолей используются:

1. Механические обеспыливающие устройства, в которых пыль отделяется под действием сил тяжести, инерции или центробежной силы (пылеосадительные камеры, циклоны)

2. Мокрые или гидравлические аппараты, в которых твердые частицы улавливаются жидкостью (мокрые циклоны, водяные, пен­ные фильтры);

3. Пористые фильтры (тканевые, волокнистые);

4. Электрофильтры, в которых частицы осаждаются в неодно­родном электрическом поле высокой напряженности.

 

Для оценки степени влияния выбросов загрязняющих веществ, выделяемых АБЗ, на окружающую среду (атмосферный воздух), разработки проектов нормативов выбросов загрязняющих веществ в атмосферу как в целом от АБЗ, так и по отдельным источникам загрязнения атмосферы, а также организации контроля за соблюдением установленных норм выбросов загрязняющих веществ в атмосферу и оценки экологических характеристик технологий, используемых на АБЗ производится обязательная инвентаризация выбросов [11].

Расчет валовых и максимально разовых выбросов загрязняющих веществ проводится с использованием удельных показателей, т.е. количества выделенных загрязняющих веществ, приведенных к единицам времени, оборудования, массе расходуемых материалов.

Удельные показатели выделения загрязняющих веществ от производственных участков приведены на основании результатов исследований и наблюдений, проведенных различными научно-исследовательскими и проектными институтами.

Работу по расчету выбросов загрязняющих веществ АБЗ проводит либо собственными силами, либо привлекает для этого специализированную организацию, имеющую лицензию на право проведения таких работ. Если расчеты выбросов загрязняющих веществ проводит специализированная организация, то она должна потребовать от АБЗ данные о фактическом количестве и типе оборудования, количестве и марках израсходованных материалов, числе дней работы в году каждой единицы оборудования и чистом времени работы его в день. Ответственность за полноту и достоверность данных инвентаризации несет АБЗ.

Расчет выбросов от АБЗ должен проводиться на основе фактических технических характеристик данного смесителя.

Инвентаризация должна проводиться как для организованных, так и для неорганизованных выбросов.

 

1.2 Источники пылеобразования и пылеулавливающее

Оборудование на АБЗ и ЦБЗ

 

Промплощадка АБЗ, как правило, включает цеха по приготовлению органического вяжущего и асфальтобетона, подготовки минеральных материалов, котельные. Зачастую здесь же располагаются цеха по приготовлению дорожных вязких битумов из сырья (гудрона), битумных эмульсий, укрепленных грунтов, камнедробильно-сортировочные установки.

АБЗ могут быть оснащены комплектами оборудования следующих типов: Д-597, Д-597А, Д-508-2А, Д-617, Д-645-2. ДС-117-2К (2Е), ДС-1895, Д-158, "Тельтомат" и другими импортными асфальтосмесительными установками, производительностью 25, 32 - 42, 50, 100 и 200 т/ч.

Источники загрязнения воздушного бассейна подразделяются на источники выделения и источники выбросов загрязняющих веществ в атмосферу.

Источники выделения загрязняющих веществ это: технологический агрегат, установка, устройство, аппарат и т.п., выделяющие в процессе эксплуатации, загрязняющие вещества.

Источниками выбросов загрязняющих веществ являются: труба, аэрационный фонарь, бункер, вентиляционная шахта, люк и т.п. устройства, посредством которых осуществляется выброс загрязняющих веществ в атмосферу.

Выбросы загрязняющих веществ подразделяются на организованные и неорганизованные.

Организованными выбросами являются выбросы, отводимые от мест выделения системой газоотводов, что позволяет применять для их улавливания соответствующие установки.

Неорганизованными являются выбросы, возникающие за счет негерметичности технологического оборудования, газоотводных устройств, резервуаров, открытых мест пыления и испарения и т.д. Источники выделения и выброса загрязняющих веществ на АБЗ приведены в таблице 1.3 [11].

При работе АБЗ в атмосферу выделяются следующие загрязняющие вещества: неорганическая пыль, с разным содержанием диоксида кремния; оксиды углерода и азота; ангидрид сернистый (серы диоксид); углеводороды, в частности полициклические: мазутная зола (в пересчете на ванадий) при применении мазута в качестве топлива; сажа при работе транспорта на дизельном топливе; свинец и его неорганические соединения при работе транспорта на этилированном бензине.

Оборудование, выделяющее загрязняющие вещества, оснащается пылегазоочистными системами, которые включают: пылеуловители различного типа с газоходами и дымососами; устройства, обеспечивающие требуемый температурный режим; бункер с механическими средствами для подачи пыли к дозаторам агрегата минерального порошка. Оборудование, применяемое для осаждения пыли из запыленного газа, можно разделить на пять основных групп: пылеосадочные камеры, циклоны, мокрые пылеуловители, тканевые фильтры и электрофильтры [10].

При хранении гудрона, переработке его в битум, нагреве битума и приготовлении асфальтобетона выделяются углеводороды.

Источником выделения загрязняющих веществ на АБЗ являются реакторные установки по приготовлению битума из нефтяного гудрона путем окисления последнего кислородом воздуха.

По принципу действия реакторные установки могут быть бескомпрессорного типа (Т-309) - в них нагнетание и распыление атмосферного воздуха в окисляемое сырье происходит в результате вращения диспергаторов; или барботажные, в которые воздух подается компрессором (тип СИ-204).

В реакторных установках в процессе окисления гудрона выделяется 5-140 кг газов окисления на 1 т готового битума в зависимости от его марки, а также от качества исходного сырья. Газы окисления содержат около 5 % углеводородов.

Газы окисления выходят из реактора в коллектор, подключенный к гидроциклону. В нем конденсируется пар и основная масса углеводородов, образуя воду и "черный соляр".

Часть углеводородов - около 20 % их исходного количества - поступают вместе с другими компонентами газов окисления в специальную печь дожига, входящую в комплекс реакторной установки.

В том случае, если реакторная установка не обеспечена печью дожига, удельный выброс загрязняющего вещества (углеводородов) может быть принят в среднем 1 кг на 1 т готового битума.

Таблица 1.3

Источники выделения и выброса загрязняющих веществ на АБЗ

Наименование участка Наименование источников выделения Наименование источников выброса
     
Асфальтосмеситель­ное отделение   1. Место пересыпки каменных материалов в разгрузочную коробку 2. Узел присоединения сушильного барабана к разгрузочной коробке 3. Сушильный барабан 4. Элеватор сушильного барабана 5. Грохот 6. Места пересыпки наполнителей в бункеры 7. Мешалки 8. Пневмотранспорт наполнителя в силосные емкости Пылеуловители с выхлопными трубами
Битумное отделение 1.Битумные котлы (гудронохранилище, битумохранилище) Выхлопные трубы
Камнедробильное отделение 1. Место пересыпки камня в приемный бункер 2. Щековая дробилка 3. Конусная дробилка 4. Грохот 5. Место пересыпки молотых материалов с конвейера Неорганизованные выбросы
Отделение по приготовлению минерального порошка 1. Сушильный барабан 2. Шаровая мельница 3. Узел выгрузки (место пересыпки) порошка Выхлопная труба сушильного барабана Пылеуловители
Штабели песка и щебня, погрузочно-разгрузочные площадки 1.Склады каменных материалов Неорганизованные выбросы
Грунтосмеси- тельная установка 1. Мешалка 2. Узел подачи цемента 3. Бункер минеральных материалов 4.Узел приготовления и дозирования органического вяжущего Неорганизованные выбросы

 

Продолжение таблицы 1.3

Наименование участка Наименование источников выделения Наименование источников выброса
     
Эмульсионный цех 1. Узел подготовки и разогрева органического вяжущего 2. Узел приготовления раствора эмульгатора Люк   Люк
Котельная   1. Топочное устройство Дымовая труба

 

В состав цементобетонного завода входят склады заполнителей и цемента, бетоносмесительный цех, формовочный цех, склад готовой продукции (для заводов ЖБК) вспомогательные производства.

 

Таблиц 1.4

Классификация выбросов АБЗ в атмосферу

  №№ п/п (код)   Название (формула) соединений ПДК м.р. ПДК с.с. ОБУВ мг/м3 Класс опасности
  Свинец и его неорганические соединения (в пересчете на свинец) 0,001  
  Азота оксиды (в пересчете на NО2) 0,085  
  Сажа 0,150  
  Ангидрид сернистый (серы диоксид – SO2) 0,500  
  Углерода оксид (СО)   5,000  
  Углеводороды предельные C12-C19 (в пересчете на суммарный органический углерод) 1,000  
  Мазутная зола (в пересчете на ванадий) 0,002 с.с.  
  Пыль неорганическая (SiO2 > 70 %)   0,150  
  Пыль неорганическая (SiO2 = 20-70 %)   0,300  
  Пыль неорганическая (SiO2 <20 %)   0,500  

 

Цементобетонные заводы и заводы сборного железобетона относятся к числу предприятий, на которых санитарно-гигиенических условия труда и состояние окружающей среды тесно взаимосвязаны и должны строго соблюдаться в процессе функционирования данного предприятия.

При работе цементобетонного завода наиболее заметными являются ингредиентное и параметрическое загрязнения атмосферного воздуха. В атмосферу выделяются в большом количестве мелкодисперсные частицы, неорганическая пыль. Уровень шума на рабочих местах может достигать 98 дБА.

Загрязнение почвы происходит за счет пыления и потерь товарной бетонной смеси при погрузке и вывозе с предприятия. Загрязнение грунтовых вод вызывается недостаточно стабильной работой шламосборников, часто засоряющихся остатками бетонной смеси.

Современные пылеулавливающие системы должны удовлетворять следующим требованиям:

 

Ø иметь высокую эффективность работы (не менее 99 %) для обеспечения соблюдения санитарных норм в зонах расположения заводов (под эффективностью работы оборудования для очистки дымовых газов подразумевается отношение количества пыли, оставшейся в пылеуловителе, к количеству пыли, содержащейся в дымовых газах до его прохождения через пылеуловитель);

Ø принимать газ с высокой начальной запыленностью (40 – 300 г/см3);

Ø иметь высокую термостойкость (температура 4730 К);

Ø обеспечивать устойчивую работу в условиях нестабильного режима технологического оборудования (изменение влажности, погодных условий, остановка машин);

Ø осаждать раздельно крупную и мелкую пыль:

Ø обеспечивать промышленную утилизацию уловленной пыли (использовать ее при приготовлении смесей);

Ø иметь высокой уровень унификации;

Ø работать в автоматическом и дистанционном режиме управления.

 

Для удовлетворения указанных требований на производственных предприятиях применяют различные типы пылеулавливающих устройств, которые в зависимости от размеров эффективно улавливаемых частиц и эффективности их улавливания подразделяются на 5 основных классов (таблица 1.5).

В России и в европейских развитых странах на производственных предприятиях нашли широкое применение следующие типы пылеулавливающих устройств: пылеосадительные камеры; одиночные и групповые циклоны, мокрые пылеуловители; тканевые фильтры и электрофильтры.

Для предварительной очистки отходящих газов от пыли целесообразно использовать пылеосадительные камеры, в которых отделение пыли происходит в результате ее осаждения под действием собственного веса.

 

Таблица 1.5

Места выделения и источники выбросов загрязняющих веществ на ЦБЗ

Участок Места выделения Источники выброса  
Склад заполнителя Участок разгрузки заполнителя; участок подачи заполнителя в бетоносмесительный цех Неорганизованные выбросы
Склад цемента Разгрузочные работы; пневмотранспорт (элеваторы); пылеосадители; тканевые фильтры Неорганизованные выбросы
Бетоносмесительный цех Приемка цемента в промежуточный бункер; подача цемента в смеситель; приготовление бетонной смеси; пылесадители; тканевые фильтры Неорганизованные выбросы
Арматурный цех Изготовление арматурных каркасов (сварка)   -
Формовочный цех   Тепловлажностная обработка Неорганизованные выбросы пара
Склад готовой продукции   Бракованные изделия; погрузочные работы Неорганизованные выбросы

 

 

Таблиц 1.6

Классификация пылеуловителей

Класс пылеуловителя   Размер эффективно улавливаемых частиц, мм Группа пыли по дисперсности, мм Эффективность, %
I 0,3 - 0,5   IY Y 99,9 - 80
II   IY III 92 - 45 99,9 - 92
III   III II 99 - 80 99,9 - 95
IY     II 99,9 - 95
Y     I  

 

Приемлемая эффективность очистки газов достигается при длительном нахождении частиц в пылеосадительной камере. Основные достоинства осадительных камер – простота конструкции, незначительные затраты на их эксплуатацию, небольшой расход энергии, возможность улавливания абразивной пыли. Они используются двухступенчатой системе очистки на первой ее ступени и устанавливаются перед циклонами или водными пылеуловителями и фильтрами, обеспечивая повышение общей эффективности очистки и увеличение срока службы основных пылеуловителей [13].

 

Таблица 1.7

Ориентировочная эффективность аппаратов газоочистки и пылеудаления

Тип оборудования Размеры эффективно улавливаемых частиц, мкм
Осадитель камеры до 100
Циклоны до 50
Циклоны повышенной эффективности до 5
Водные пылеуловители до 0,1
Тканевые фильтры до 0,013
Электрофильтры до 0,01

 

Аппараты сухой очистки

Широкое распространение для сухой очистки получили циклоны различных типов, принцип действия которых основан на использовании центробежной силы.

Газовый поток вводится в циклон через патрубок по касательной к внутренней поверхности корпуса и совершает вращательное движение вдоль корпуса. Под действием центробежной силы частицы пыли образуют на стенках циклона пылевой слой, который вместе с частью газа попадает в бункер. Отделение частиц пыли от газа, попавшего в бункер, происходит при повороте газового потока в бункере на 1800. Освободившись от пыли, газовый поток образует вихрь и выходит из бункера, давая начало газу, покидающему циклон через выходящую трубу. Для нормальной работы циклона необходима герметичность бункера.

Циклоны занимают промежуточное положение между аппаратами грубой (предварительной) и тонкой очистки газов. К достоинствам циклонов следует отнести: надежность работы при температуре газов до 500°С; улавливание пыли в сухом виде; эффективность работы при высоких давлениях газов; простоту изготовления.

При небольших капитальных затратах и эксплуатационных расходах степень очистки в циклоне от частиц пыли более 10 мкм составляет 80-90%. Недостатки циклонов: высокое гидравлическое сопротивление 1200-1500 Па; невозможность использования для очистки газов от мелких частиц; недос­таточно эффективное улавливание частиц размером менее 5 мкм [16].

Наибольшее применение в нашей стране нашли циклоны конструкции НИИГаза: цилиндрические (ЦН-11, ЦН-15У, ЦН-2У) и конические (СДК-ЦН-33, СК-ЦН-34). Конические циклоны НИИГаза отличаются от цилинд­рических циклонов серии ЦН значительно большим сопротивлением и су­щественно большей эффективностью. С целью повышения эффективности пылеочистки с помощью циклонов их очень часто объединяют в группы по несколько штук. При этом поток отходящих газов направляют в соответст­вующие параллельные группы циклонов. Перед циклонами или после их устанавливают вентилятор-дымосос.

 

 

 

Рисунок 1.1 - Устройство универсального циклона НЦ-15 для очистки воздуха на АБЗ: 1 - коническая часть, 2 – цилиндрическая часть, 3 – винтообразная крышка, 4 – улитка, 5 – входной патрубок, 6 – выхлопная труба.

 

Достоинством дымососов-пылеуловителей является постоянство ко­эффициента очистки газов при всех нагрузках, малые аэродинамические потери на улавливание частиц, минимальные металлоемкость и удельные капитальные затраты. Главный недостаток - абразивный износ рабочего колеса и деталей привода.

С целью повышения эффективности очистки газов иногда применяют­ся батарейные циклоны или мультициклоны. Они отличаются исключительной компактностью, высокой производительностью, низкой удельной емкостью и вполне удовлетворительным газораспределением. По размерам батарейные циклоны значительно меньше групповых, но для обеспечения той же производительности требуется большее их количество.

Водные пылеуловители

Водные пылеуловители мокрой очистки работают по принципу осаждения частиц пыли на поверхности либо капель жидкости, либо пленки.

Среди аппаратов мокрой очистки на практике наиболее применимы ци­клоны «СИОТ», барбатажно-вихревые пылеуловители и скрубберы Вентури.

Циклон-прерыватель «СИОТ» улавливает пыль вследствие ее осажде­ния на смачиваемые стенки циклона под действием центробежных сил. Во­да в циклоне подается непосредственно во входной патрубок и на водорас­пределитель, расположенный в верхней части циклона. Питание циклона водой осуществляется через водонапорный бак с шаровым клапаном. На сливной трубе устанавливается гидравлический затвор для предупреждения подсоса воздуха.

 

 

Рисунок 1.2 - Устройство сухого циклона СИОТ для грубой и средней очистки воздуха и газов от неслипающейся неволокнистой пыли:

1 - раскручиватель с винтовой крышкой, 2, 4 – выходной и входной патрубок, 3 – крышка корпуса, 5 – корпус, 6 – пылеотводящий патрубок

 

 

Широкое распространение получили мокрые барбатажно-вихревые пылеулавливатели, принцип действия которых основан на про­пуске запыленных газов через слой воды.

Эффективность очистки заполненных газов барбатажно-вихревыми пы­леуловителями составляет 90 % для мелких частиц размером менее 1 мкм до 99,5 % для частиц размером более 1 мкм и свыше 99,5 % для частиц размером более 10 мкм. Для обеспечения большего смачивания частиц пыли водой к ней до­бавляют гашеную известь, которая уменьшает поверхностное натяжение.

За рубежом широкое распространение получили водные пылеуловители - «Ротоклоны». При соответствующей скорости газов увлекаемая вода движется сна­чала по нижней направляющей импеллера, затем отбрасывается к его верх­ней направляющей и при выходе из импеллера возвращается в резервуар, падая водяной завесой. Циркуляция воды происходит только вследствие движения воздушного потока и для этого не требуется дополнительных устройств. Газы от пыли очищаются в результате совместного действия центробежной силы на частицы пыли и перемешивания запыленных газов с водой. Уловленная водой пыль попадает в резервуар, из которого она затем удаляется при помощи пластинчатых и винтовых конвейеров [16].

Преимуществом «Ротоклонов» является неизменность эффективности пылеуловителя при изменении производительности. Эффективность рото-клона равна 60-95 %. Несмотря на достаточно высокую эффективность и вполне приемлемое гидравлическое сопротивление (до 5 кПа), ротоклоны не получили широкого распространения в нашей стране.

Скрубберы Вентури наиболее эффективные аппараты мокрой очистки газов. Они имеют различные варианты конструктивного исполнения и в отдельных случаях обеспечивают высокую эффективность аэрозолей (до 99,8%) со средним размером частиц 1-2 мкм при начальной концентрации до 100 г/м3. Принцип действия Скрубберов Вентури основан на интенсив­ном управлении газовым потоком, движущимся с высокой скоростью (40-150 м/с), орошающей его жидкости. Осаждению частиц на каплях жидкости способствуют высокие относительные скорости между ними.

Основные преимущества мокрых пылеуловителей - сравнительно не­большая стоимость и более высокая эффективность улавливания частиц по сравнению с циклонами. Их можно применить для очистки газов от частиц размером до 0,1 мкм. Однако мокрые пылеуловители обладают рядом недос­татков, ограничивающих область их применения: образование в процессе очистки шлама, что требует специальных систем для его переработки; вынос влаги в атмосферу и вероятность забивания газоотходов и оборудования пы­лью и потери жидкости вследствие брызгоуноса; большой расход воды и не­обходимость создания оборотных систем подачи воды в пылеуловитель.

Тканевые фильтры

С ужесточением требований к очистке газов на АБЗ все шире исполь­зуют тканевые фильтры. Применение тканевых фильтров обеспечивает: более высокую степень очистки газов от взвешенных частиц, чем в газоочистных аппаратах других типов; возможность улавливания частиц при любом давлении газов; ис­пользование химически стойких материалов; возможностьполного улавли­вания пыли всех размеров, включая субмикронные.

К недостаткам тканевых фильтров следует отнести необходимость пе­риодической замены некоторых фильтрующих перегородок и сравнительно высокий расход энергии при использовании отдельных видов пористых фильтров. Степень очистки пыли на АБЗ, оборудованных матерчатыми фильтрами составляет 99,9 %. В некоторых асфальтобетонных установках фирм «Бернарди» (Италия) и «Вибау» (Германия) тканевый фильтр является единственным устройством обеспечивающим очистку пыли от газов сушильного барабана на АБЗ.

Процесс фильтрации состоит в задержании частиц примесей на пористых перегородках при движении через них дисперсных сред. Частицы примесей оседают на входной части пористой перегородки и задерживаются в порах, образуя на поверхности слой и, таким образом становится для вновь поступающих частиц частью фильтровой перегородки, что увеличивает эффективность очистки фильтра и перепад давления на фильтроэлементе.

Рисунок 1.3 - Схема тканевого фильтра: 1 - корпус; 2 - фильтроэлемент; 3 - слой частиц

Таблица 1.8

Техническая характеристика тканевых фильтров

Показатели Тканевые фильтры
СА-100У РС 65 РС 65.4 ДС 1857 КДМ-2047
Площадь фильтрования, м2          
Производительность, м3          
Количество рукавов, шт.          
Концентрация пыли в газе, г/м3:          
на входе в фильтр 200-400        
на выходе из фильтра 0,02-0,04 0,05 0,05 0,02 0,02
Температура газа, °С          
Масса (без электрооборудования) н/д        
Габаритные размеры, мм длина          
ширина          
высота       15 000  
Изготовитель ОАО «Саста» (Россия) ОАО «Строймашина» (Россия) ОАО «Кредмаш» (Украина)

 

 

Электрофильтры

Обладают высокой степенью очистки (до 99,9%), улавливают твердые и жидкие частицы в широком диапазоне размеров (от 0,1 до 100 мкм), имеют невысокое гидравлическое сопротивление (150-200 Па) и энергозатраты, могут быть полностью автоматизированы.

Электрическая очистка - один из наиболее современных видов очистки газов от взвешенных в них пыли и тумана. Процесс очистки основан на ударной ионизации газа в зоне коронирующего разряда, передаче заряда ионов частицам примесей и осаждения последних на осадительных и коронирующих электродах.

В электрическом фильтре взвешенные в газовом потоке час­тицы пыли осаждаются электрическими силами. Запыленные газы проходят через электрическое поле высокой напряженности, которое создается меж­ду заземленными осадительными электродами с положительной полярно­стью и коронарными электродами с отрицательной полярностью. Частицы пыли накапливаются слоями на осадительных электродах до тех пор, пока механизм встряхивания не оторвет их и не разрушит слой пыли на крупные агломераты, которые достаточно тяжелы и могут выпадать из газового по­тока, не притягиваясь снова к электроду.

Рисунок 1.4 - Схема электрического фильтра: 1 - частицы пыли; 2 - электрическое поле; 3 - заземленные осадительные электроды с положительной полярностью; 4 - коронарные электроды с отрицательной полярностью

 

Несмотря на высокую эффективность очистки вы­бросов, применение электрофильтров для специфических условий АБЗ ог­раничено по следующим причинам: сложность в работе при изменении по­дачи и температуры газов в течение рабочего цикла; наличие в газах серни­стых соединений; большие габариты; высокая стоимость изготовления, монтажа и эксплуатации; потребность специально подготовленного квалифици­рованного персонала.

Важным направлением в целях сокращения выбросов на АБЗ является работа по совершенствованию структуры парка асфальтосмесительных установок с целью улучшения экологической обстановки на АБЗ.

В настоящее время наметилась тенденция к улучшению структуры парка асфальтосмесительных установок за счет замены их на более производительные с улучшенными экологическими характеристиками, в.т.ч. и зарубежного производства. На объекты дорожного хозяйства продолжается поставка асфальтосмесительных установок ОАО «Кредмаш» (Украина) ДС-185 и Д-168 производительностью 50 и 130 т/час соответственно. В них предусмотрена замена мокрого пылеуловителя барботажного типа на более эффективный скруббер «Вентури». Часть установок данного типа можно поставлять и с тканевыми фильтрами в модификации для эксплуатации на природном газе.

Продолжается и оснащение дорожных организаций моделями с улучшенными экологическими показателями асфальтосмесительных установок фирм «Амман» и «Бенинхофер» (германия), Бернарди (Италия), Калоткине (Финляндия) и др. С учетом опыта эксплуатации зарубежного оборудования в России разработана асфальтосмесительная установка БАС – 30 производительностью 30 т/ч.

Сушка и нагрев каменных материалов в сушильном барабане является одной из главных технологических операций в производстве асфальтобетонных смесей. Однако мировой опыт показывает, что наиболее эффективно тепло- и массообменный процесс (сушка и нагрев) сыпучих сред осуществляются в виброкипящем слое. При этом экономия топлива составляет 30 % и более.

Для условий производства асфальтобетонных смесей в России в качестве достаточно перспективной с экологической точки зрения можно предложить асфальтосмесительную установку ДС - 168.

Констру


Поделиться с друзьями:

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Наброски и зарисовки растений, плодов, цветов: Освоить конструктивное построение структуры дерева через зарисовки отдельных деревьев, группы деревьев...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.122 с.