ЛЕКЦИЯ 4. Измерительные приборы для статических испытаний и область их применения — КиберПедия 

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

ЛЕКЦИЯ 4. Измерительные приборы для статических испытаний и область их применения

2018-01-05 2093
ЛЕКЦИЯ 4. Измерительные приборы для статических испытаний и область их применения 5.00 из 5.00 3 оценки
Заказать работу

ЛЕКЦИЯ 4. Измерительные приборы для статических испытаний и область их применения

 

При испытании строительных конструкций статическими нагруз­ками измеряются как действующая сила, так и основные виды деформаций: прогибы (перемещения), продольные фибровые деформации, углы поворо­та конструкций и ее элементов, сдвиги отдельных элементов конструкции или их волокон относительно друг друга, кроме того, контролируется изме­нение напряженного состояния и свойств самого материала конструкции под действием внешней нагрузки.

При статических испытаниях используют прибор, как с непосред­ственным отсчетом значений измеряемой величины, так и измерительные преобразователи, позволяющие осуществлять измерения дистанционно, что на практике существенно расширяет возможности инженерного экспери­мента Указанные преобразователи позволяют автоматизировать процесс измерения и регистрации значений контролируемых величин и выполнять измерения в местах, недоступных для приборов с непосредственным отсче­том.

При значительном количестве установленных датчиков и прибо­ров, а также в случае необходимости проведения неоднократных измере­ний, на практике в настоящее время возможно создание следящих элек­тронных систем с автоматическим опросом и автоматической регистрацией показаний приборов с непосредственным вводом исходных данных прово­димых испытаний в ЭВМ и проведением математической обработки полу­ченных результатов.

 

Силоизмерительные приборы

 

При испытании строительных конструкций статическими нагруз­ками, создаваемыми грузовыми механизмами - домкратами, лебедками, талями или талрепами; измерение интенсивности нагрузки осуществляют динамометрами. На практике различают два вида динамометров ста­ционарные и переносные.

Стационарные динамометры применяют в основном для поверки рабочих переносных динамометров. Указанные динамометры называются образцовыми. Образцовые динамометры должны иметь государственное свидетельство с таблицей зависимостей между нагрузками и показаниями индикатора для нескольких реперных точек.

По конструктивным особенностям рабочие динамометры подраз­деляются на пружинные, гидравлические и электрические. В зависимости от способа регистрации измеряемой силы различают динамометры со стре­лочным указателем, со счетным приспособлением и записывающие.

Динамометры со стрелочным указателем используют, главным об­разом, для измерения статических усилий, а счетно-регистрирующие и за­писывающие - для переменных усилий. Динамометры, имеющие записы­вающие устройства, называются динамографами. Конструктивные особен­ности образцовых пружинных динамометров, гидравлических и электри­ческих представлены на рис. 1,2,3.

В полевых и лабораторных условиях действующую силу, прикла­дываемую к строительной конструкции, можно измерить и самым простым способом. В установку для измерения силы вместо динамометра вставляют металлический стержень и индикатором часового типа измеряют его отно­сительную деформацию е на возможно большой базе с точностью 0.001 мм. Тогда действующую силу N в металлическом стержне в зависимости от его площади сечения А и модуля упругости материала стержня Е можно опре­делить по следующей формуле:

 

N= ∙A∙E ()

 

В последнее время все шире стали применяться электромеханичес­кие динамометры с тензорезистерной измерительной системой, представ­ленной на рис.3.

Рассмотренные динамометры обладают очень высокой чувстви­тельностью, широким диапазоном измеряемых усилий. Одновременно они очень компактны по размерам и сопрягаемы с существующей вычисли­тельной техникой, позволяющей автоматизировать все операции, связанные с измерениями и обработкой получаемых результатов.

 

 

а б

 

Рис. 1. Образцовые динамометры: а – сжатие, б - растяжение

1 - корпус, 2 - нижняя сита, 3 - верхняя пята, 4 – флажки, 5 - рабочая игла, 6 - индикатор

 

 

 

Рис. 2. Схема гидравлического динамометра

1 - рабочий цилиндр. 2 - рабочий поршень, 3 - серьга, 4 - измерительный цилиндр, 5 - поршень измерительного цилиндра, 6 – пружина, 7 - барабан, 8 –рычаг, 9 - рабочая шкала, 10 - электрический двигатель, 11 - указатель давления

 

 

Схема электрических соединений

а

 

 

б

 

в

 

 

Рис. 3. Конструктивные особенности электромеханических динамометров: а - для измерений растягивающих усилий, б, в - для измерений сжимающих усилий

 

 

Клинометры

 

Углы наклона элементов, подлежащие определению при испытани­ях в пределах расчетных нагрузок, как правило, не велики. В большинстве случаев приходится учитывать доли градуса и минуты, а при испытаниях особо жестких железобетонных конструкций – и секунды. Приборы и при­способления, применяемые для измерения столь малых углов, должны об­ладать высокой чувствительностью.

При загружениях за пределами расчетных нагрузок, и в особенно­сти при приближении к стадии разрушения, угловые перемещения начина­ют резко возрастать, и для определения их оказываются более целесообраз­ны геодезические методы и фотосъемка.

Ниже рассмотрим основные типы клинометров и приспособлений для измерения малых угловых перемещений.

 

Способ жесткого рычага

 

К наблюдаемому сечению крепится металлическая консоль (рис. 14). Линейные перемещения двух точек консоли, обусловленные накло­ном сечения, измеряют с помощью прогибомеров. Зная разность перемеще­ний на базе В определяем угол наклона а.

 

Рис. 14. Измерение угла наклона при помощи жесткой консоли; 1 - испытываемый элемент; 2 - жест­кая консоль: 3 - соединительная про­волока; 4 и 5 - прогибомеры; 6 - неподвижные опоры для крепле­ния прогибомеров; а1 и а2 - линейные перемещения, из­меренные прогибомерами

Клинометр с уровнем

 

Кинематическая схема их показана на рис. 15. Высокочувстви­тельный уровень 2 приводится в горизонтальное положение вращением микрометренного винта 3. Отсчеты берутся по шкале барабана 4 микрометренного винта. Разность отсчетов при положениях, показанных на рис. 2.19. а и б, дает значение искомого угла а.

 

Рис. 15. Клинометры с уровнем: 1 - исследуемая конструкция; 2 - высокоточный уровень. 3 - микрометренный винт. 4 - барабан микрометренного винта со шкалой; 5 - шарнирная опора

 

Оптический клинометр

 

К наблюдаемой точке прикрепляется небольшое зеркальце (отсю­да и другое название - «зеркальный способ»). Зеркало 1 (рис. 17) ориен­тируется так чтобы с помощью зрительной трубы 2 (обычно, геодезическо­го инструмента) мог быть сделан отсчет по шкале 3 измерительной рейки, расположенной рядом с инструментом.

При изменении наклона исследуемого элемента на угол а зер­кальце проворачивается вместе с ним на тот же угол, что сопровождается поворотом «оптического рычага» СВ на угол 2α.

Зная расстояние L между рейкой и Зеркальцем и изменение а от­счетов по рейке, находим значение а из соотношения

Для облегчения ориентировки зеркало шарнирно крепится к уста­новочной струбцине так, чтобы оно могло проворачиваться вокруг двух взаимно перпендикулярных осей I и II.

Применение зеркального способа особенно целесообразно при наблюдении за отдаленными точками сооружения, трудно доступными во время испытания. Другая область применения - наблюдения за изменением углов наклона весьма гибких элементов (например, на моделях), где исклю­чена установка сравнительно тяжелых клинометров или крепление консо­лей с прогибомерами.

 

Рис. 17. Схема измерения углов наклона с помощью оптического клинометра:

1 - зеркало в положении до деформации и 1 - после деформации; 2 - зрительная

труба; 3 - шкала зрительной рейки; а = АВ - разность отсчетов по рейке до и после деформации

 

Тензометры

 

Тензометры применяются для измерения линейных деформации поверхностных волокон элементов конструкций при статических испыта­ниях.

Величина измеренной тензометром деформаций может быть использована для вычисления приращения напряжения по закону Гука при известном значении модуля упругости материала или для определения мо­дуля упругости при известном значении напряжения.

По конструктивному признаку можно выделить четыре разновид­ности тензометров: механические, электрические, струнные, тензорезисторные.

 

Механические тензометры

 

Механические тензометры представлены рядом типов различного конструктивного оформления. Остановимся несколько подробнее на одном наиболее распространенном рычажном тензометре (Гугенбергера), схема­тически показанном на рис. 18.

 

а б

Рис. 18. Кинематическая схема рычажного тензометра а - начальное положение;

6 - смешение рычагов после деформации (показаны пунктиром); 1 - испытываемый элемент; 2 - острие неподвижной и 4 - подвижной ножек; 3 - неподвижная и 5 - подвижная ножки; 6 - ось вращения ножки 5; 7 - передаточ­ный стерженек; 8-стрелка; 9-ось вращения стрелки; 10-шкала; l -база тензо­метра

 

Как видно из рисунка, при деформации исследуемого материала конец стрелки 8 тензометра перемещается вдоль шкалы 10 с миллиметро­выми делениями в новое положение с/ (на схеме взят случай сжатия).

Увеличение k прибора определиться при этом из соотношения

k= ,

где a, b, r, s- плечи рычагов.

∆- изменение расстояния между точками опирания 2 и 4.

Чаще всего тензометры данного типа выпускаются с тысячекрат­ным увеличением, что при базе l = 20 мм дает возможность оценивать оп­ределяемую деформацию до = 10-4. Имеются образцы данных тензометров с увеличением и несколько тысяч раз и базой до 2 мм используемых при измерениях, например, в зонах концентрации напряжений.

Струнные тензометры

 

В этих приборах дистанционного действия использована зависи­мость между частотой f собственных колебаний и натяжением струны, оп­ределяемая выражением

f=

где l - длина струны, - плотность ее материала.

Струнные тензометры применяются как приставные (рис. 20, а), так и закладываемые в толщу материала конструкций, например в бетон массивных гидротехнических сооружений. В этом случае (рис. 20, б) струна 2 защищается от соприкосновения с бетоном трубками 5, жестко соединенными с дисками 4, втопленными в кладку.

При деформации бетона расстояние L между дисками меняется, что сопровождается изменением натяжения струны. Если f1 и f2 - последовательно замеренные частоты се собственных колебаний, то значение дефор­мации может быть найдено из выражения

где Е - модуль упругости материала струны.

Для возбуждения колебаний используется помещенный рядом со струной электромагнит 6, в котором возникшие колебания струны, в свою очередь, индуцируют переменный ток той же частоты f, определяемой с помощью регистрирующих устройств, соединенных с тензометром прово­дами 7.

Для исключения влияния температуры и других возможных воз­действий, влияющих на получаемые результаты, рядом с группами зало­женных в бетон «рабочих» тензометров помещают «компенсационный» прибор, размещаемый таким образом, чтобы деформации бетона на него не действовали. Учитываются также показания заложенных в кладку телетер­мометров и т.д.

Струнные тензометры применяют главным образом для длитель­ных измерений, поскольку существенным их преимуществом по сравнению с тензорезисторами являются то. что на частоту колебаний струны не влияют возможные утечки тока и изменения омического сопротивления в со­единительных коммуникациях, с чем приходится серьезно считаться и при­нимать соответствующие защитные меры при пользовании тензорезисторами.

а б

 

Рис. 20. Струнные тензометры: а - приставной (или «накладной») тензометр; 6 - закладной тензометр;

1 - испытываемая конструкция; 2 - натянутая стальная струна; 3 - опоры для крепления струны; 4 - жесткие диски; 5 - ограждающие трубки; 6 - электромаг­нит; 7 - соединительные провода; l - длина струны; L - расстояние между сред­ними сечениями дисков 4.

Тензорезисторные тензометры

 

В настоящее время для измерения деформаций при испытаниях со­оружений, строительных конструкций и деталей наиболее широко исполь­зуются тензорезисторные тензометры, в основу которых положены тензорезисторы различной конструкции.

Тензорезисторы предназначены для дистанционных измерений де­формаций.

Принцип действия тензорезисторов основан на изменении омичес­кого сопротивления R проводников и полупроводников при деформации.

Основной характеристикой тензорезистора является его коэффици­ент тензочувствительности

К=

т.е. отношение относительного изменения электросопротивления ∆R/R тензорезистора к вызывающей это изменение деформации исследуемо­го материала, где l - длина базы тензорезистора.

Для изготовления тензорезисторов используются обычно сплавы меди и никеля (константам, элинвар), характеризующиеся высокий коэффициентом тензочувствительности К, постоянством значений К в тре­буемом диапазоне деформаций, большим удельным омическим сопротив­лением = R/AI (где А - поперечное сечения проводника, которое может быть взято достаточно малым) и практически постоянством значений при колебаниях температуры, возможных в условиях пользования тензорезисторами при испытаниях строительных конструкций.

Следует отметить, что с помощью тензорезисторов измеряется от­носительное удлинение , а не изменение ∆l длины базы (как у механичес­ких тензометров).

Однако длина базы имеет существенное значение и для тензорезис­торов, поскольку при исследованиях материалов с неоднородной структу­рой для получения усредненных значений деформаций в рассматриваемой тоне длина базы должна в несколько раз превосходить размеры наиболее крупных составляющих материала. Однако при исследовании деформаций в зонах концентрации напряжений длину базы следует брать по возможнос­ти наименьшей.

При испытаниях строительных конструкций используют проволоч­ные, фольговые и полупроводниковые тензорезисторы.

Петлевые проволочные тензорезисторы (рис. 21а) из тонкой проволоки (диаметром 12...30 мк), приклеенной к бумажкой или пленочной подложке, были еще сравнительно недавно основным типом приборов, применявшихся при испытании сооружений. Эти тензорезисторы (с базой обычно от 5 до 100 мм) удобны в работе и несложны в изготовлении. Одна­ко им свойственна в большинстве случаев поперечная чувствительность, обусловленная наличием закруглений, соединяющих прямые участки тензорешетки и воспринимающих деформации, направленные перпендикулярно к продольной оси тензорезистора. Наличие поперечной чувствительнос­ти тензорезистора снижает его осевую тензочувствительностъ.

. а б

 

в г

Рис. 21. Типы тензорезисторов: а - проволочный петлевой; б - проволочный беспетлевой.

в - фольговый; г - полупроводниковый; 1 - тензочувствительные элементы; 2 - низкоомные перемычки; 3 - выводные контакты; 4 - подложка («основа») и наклеенный над тензорешеткой защитный слой тонкой бумаги; l - база тензорезистора.

 

От этого недостатка свободны беспетлевые тензорезисторы (рис.21б) с низкоомическими медными перемычками. Из-за отсутствия поперечной тензочувствительности и лучших условий передача деформа­ций (ввиду продолжения прямолинейных участков тензорешетки и за перемычки) база их может быть уменьшена до 2...3 мм.

В настоящее время все большее распространение получают фоль­говые тензорезисторы (рис.21в) из металлической фольги толщиной не более 4...6 мк. Этим тензорезисторами при изготовлении фотолитографским способом могут быть приданы любые очертания, требуемые условия­ми эксперимента. Вследствие низкой поперечной чувствительности и пло­ского сечения элементов тензорешетки. они имеют при той же плошали сечения более развитую поверхность приклейки, что улучшает условия их работы.

Полупроводниковые тензорезисторы (рис.21г) по сравнению с рассмотренными выше типами обладают значительно большей тензочувствительностью, меняющейся, однако, при деформации и при изменениях температуры. Несмотря на это, они эффективно применяются в упругих элементах различных измерительных приборов (например, динамометров), где большое значение имеет их высокая чувствительность, а отмеченные недостатки могут быть компенсированы.

Тензорезисторы, применяемые при испытаниях сооружений, долж­ны давать возможность измерения деформаций в диапазоне до 10 -5: при исследовании упругой стадии работы материала - до (5...7) ∙103 и упруго-пластической до 10 -1 и более. Необходимым условием является также стабильность показаний тензорезисторов, их влагостойкость т.п.

Влияние температурных погрешностей, обусловленных темпера­турным коэффициентом изменения сопротивления тензонитей и разно­стью температурного коэффициента расширения материала тензорезистора αт и исследуемого материала αи, исключают установкой компенсационных тензорезисторов.

В случаях, когда установка компенсационных тензорезисторов не­возможна или они не могут быть помешены в те же температурные усло­вия, используют так называемые самокомпенсированные тензорезисторы. материал которых должен удовлетворять условию (αи - αт)∙К, где К - коэффициент тензочувствительности тензорезистора.

Повышенные требования предъявляются к глубинным тензорезисторам разной конструкции, закладываемым в толщу схватывающегося ма­териала (например, бетона), когда должна быть обеспечена их безотказная работа в течение длительного времени.

Изменения сопротивления тензорезисторов в процессе испытаний весьма малы (тысячные доли ома). Для измерения столь малых колебаний сопротивления применяют в большинстве случаев мостовые измерительные схемы (рис. 22).

 

 

а б

Рис. 22. Измерительные мости: а - схема моста Уитстона; б - мост с реохордом;

R1, R2, R3, R4 - сопротивления, включенные в плечи моста; r1 и r2- сопротивление реохорда

 

Во внешние плечи моста включены «рабочий» тензорезистор с со­противлением R1 воспринимающий наблюдаемые деформации, и «компен­сационный» тензорезистор с сопротивлением R2 = R1, помещаемый в оди­наковых с ним температурных условиях в непосредственной близости от рабочего, но не подверженный воздействию измеряемых деформаций. Во внутренние плечи включены тензорезисторы с сопротивлениями R3 и R4 , помещаемые в регистрирующем приборе и связанные с рабочим и компен­сационным тензорезисторами электропроводами. Как известно, мост будет сбалансирован (т.е. ток в его измерительной диагонали bd будет равен ну­лю) при условии

 

R1∙ R4= R2∙ R3 ()

 

Возможны два метола измерений:

1) метод отклонений (называемый также «методом непосредствен­ных отсчетов»), когда изменение сопротивления ∆R1 рабочего тензорезистора определяется по силе тока, возникающего в измерительной диагонали ранее сбалансированного моста.

2) нулевой метод (более совершенный), при котором относительные изменения сопротивления ∆ R1 / R1 определяют балансировкой моста с по­мощью включенного в цепь (рис.22б) реохорда тп изменением отноше­ния сопротивлений r1/r2. Этот метод является основным при статических испытаниях.

В настоящее время разработано большое количество различных си­стем коммутаторов, которые позволяют последовательно присоединять к отсчетному устройству большое количество (до нескольких сот) тензорезисторов.

Вес это, а также дешевизна, крайне малый вес, малые габариты тензорезисторов и возможность крепления (приклейки) в любых точках исследуемой конструкции, обусловливают широкое их применение на практике.

 

Сдвигомеры

 

Приборы, измеряющие деформации сдвига, называются сдвигомерами. Широкое распространение из этой группы приборов получил тензо­метр - сдвигомер Аистова (ТСА). Он может быть использован как тензо­метр или сдвигомер. При этом кинематическая схема указанного сдвигомера практически полностью аналогична представленному выше электроме­ханическому тензометру на рис. 23. с той лишь разницей, что у тензометра-сдвигомера Аистова имеется еще дополнительно оснастка (рис. 23) для установки прибора на строительную конструкцию, состоящую из нескольких элементов, между которыми в процессе испытания возможны сдвиговые деформации.

 

 

 

Рис. 23. Дополнительная оснастка и схема установки тензометра-сдвигометра на строительную конструкцию

 

Фотометрические методы

 

Фотометрические методы условно подразделяются на классичес­кую фотограмметрическую и стереофотограмметрическую съемки с после­дующей специальной камеральной обработкой полученных снимков.

Рис. 28- Схема прохождения световых лучей при фотометрической съемке: 1 - исследуемый объект; 2 - фототеодолит или фотокамера; 3 - оптический центр фотокамеры; 4 - фотопленка

 

В настоящее время эти съемки все шире используются как в натур­ных испытаниях сооружений, так и при испытаниях, выполняемых в лабо­раторных условиях, в том числе и при испытаниях строительных моделей.

Пространственная схема прохождения световых лучей при фото­грамметрической съемке представлена на рис.28.

Па практике при фотограмметрической съемке (рис.29) на вы­бранном расстоянии Y от объекта устанавливается фототеодолит и выпол­няется съемка до и после деформации обследуемого объекта. В результате координаты точки N по оси X и Z можно определить путем обработки по­лученных фотоснимков с использованием следующих формул:

 

Х= ; Z=

где X и Z - соответственно координаты точки N на объекте; Y - расстояние до фототеодолита; f- фокусное расстояние фототеодолита; x и z - координаты точки N на фотоснимке.

Для решения пространственной задачи с помощью стереофотограмметрической съемки возможно дополнительное определение по вы­полненным фотоснимкам значения координаты Y, т.е. удаления рассматри­ваемой точки N от фототеодолита. Для решения данной проблемы необхо­дима съемка обследуемого объекта с двух точек согласно рис.30.

 

Рис.29. Горизонтальная проекция рабочей схемы фотограмметрической съемки

 

 

Рис. 30. Схема стереофотограмметрической съемки с двух позиций:

1- левый снимок; 2 - правый снимок; 3 -объект;

S1, S2- местонахождения фокуса фототеодолита; В- база съемки

 

При этом в ходе обработки полученных двух снимков с двух пози­ций необходимо определить разность абсцисс Х1 и Х2, на указанных фото­снимках, используя следующую формулу:

 

р=Х12,

 

где р - горизонтальный параллакс фототеодолита.

 

Зная значения f, p, В можно определить значение Y до и после де­формирования обследуемого объекта по формуле:

Y = ,

где f- фокусное расстояние фототеодолита;

p - горизонтальный параллакс;

В - база съемки.

 

Обработка полученных фотоснимков на практике и нахождение па­раллаксов исследуемых точек производится с помощью специально предназначенного для этой цели оптического прибора - стереокомпаратора. Предложенные методы имеют следующие преимущества.

1. Одновременность фиксирования всех точек сооружения, отраженных на снимке.

2. Возможность определения перемещений в неограниченно боль­шом числе точек, выделенных на снимке.

3. Комфортность обработки снимка, производимой а спокойных лабораторных условиях с возможностью неоднократной проверки получен­ных данных. Сами же фотографии одновременно являются надежным до­кументом, отражающим фактическое состояние обследуемого объекта в момент съемки.

Одновременно данный метод имеет и недостатки.

1. На практике требуется применение специальной аппаратуры.

2. Обслуживающий персонал должен иметь соответствующую ква­лификацию и подготовку.

3. Сама съемка ограничена пределами прямой видимости.

4. До начала работы необходимо выполнить специальные подготовительные работы.

5.Большое сооружение необходимо снимать с нескольких позиций, что нарушает одновременность съемки и усложняет контрольную обработ­ку полученных снимков.

Проведенная экспериментальная проверка показывает, что при удалении объекта от фототеодолита на 10 метров погрешность в определе­нии перемещений в плоскости сооружения не превышает ±1мм. а погреш­ность в определении перемещений из плоскости сооружения достигает 13мм.

При более близких расстояниях точность результатов измерения повышается.

Для наблюдения за перемещениями в высотных сооружениях и подземных штольнях гидротехнических сооружений эффективно используют лазерные приборы, а также современные высокоточные радио- и светодальномеры.

 

 

Оценка прочности металла

 

Наибольшее применение в строительной практике для оценки прочности металла имеет прибор Польди (рис.1) ударного действия.

Наконечником прибора является шарик 2 диаметром 10 мм из твердой закаленной стали, дающий при ударе отпечаток одновременно на исследуемом металле 1 и на стальном эталонном бруске 3, твердость кото­рого HBэт должна быть заранее определена. Для получения отпечатков ударяют молотком по верхнему торцу стержня 4.

Твердость НВ исследуемого металла испытываемой конструкции определится из соотношения

 

 

НВ= HBэт

 

где D - диаметр стального шарика 2 (рис.2);

d - диаметр отпечатка на поверхности исследуемого материала;

dэт - то же. на эталонном бруске.

 

Рис. 1. Схема прибора Польди:

1 - исследуемый материал;

2-стальной шарик;

3- эталонный брусок;

4- ударный стержень;

5- обойма прибор

 

 

Рис.2. Отпечатки, получаемые с помощью прибора Польди:

1 - исследуемый материал;

2-стальной шарик;

3 — эталонный брусок

 

 

Нахождение НВ и определение прочности и марки металла произ­водятся с помощью соответствующих таблиц. Для термически обработан­ных легированных сталей вводится поправочный коэффициент.

С помощью прибора Польди можно получать, однако, лишь ориен­тировочные характеристики. Но и с учетом этого применение прибора практически полезно, в особенности в следующих случаях:

для ускоренной проверки однородности материала в различных элементах освидетельствуемых конструкций;

при отбраковке (проверке марок металла) поступающих заготовок.

 

 

Оценка прочности бетона

 

При косвенной оценке прочности бетона по твердостным характе­ристикам его поверхностного слоя приходится учитывать следующие факторы, усложняющие эту оценку:

1) большой разброс результатов испытаний на «твердость», обу­словленный неоднородностью структуры бетона. Для получения надежных данных необходимо увеличить число проверяемых на поверхности точек и статистически обработать результаты испытаний;

2) возможная карбонизация поверхностного слоя, повышающая показатели твердости, а также увлажнение поверхности, снижающее эти показатели;

3) возможность расхождения прочностных характеристик на по­верхности и в глубине массивных блоков. Это может быть проверено, на­пример, контрольным бурением с выемкой образцов с разной глубины, а также применением рассматриваемых далее неразрушающих способов.

Необходимость в простых, доступных для массового применения способов оценки качества бетона настолько настоятельна, что, несмотря на указанные затруднения, для суждения о прочности бетона по механическим характеристикам его поверхностного слоя предложен целый ряд приборов и приспособлений. Краткий обзор практически наиболее оправдавших себя и методически интересных приемов приводится ниже.

Оценка прочности бетона с помощью молотка КМ.Кашкарова.

Эталонный молоток К.П. Кашкарова схематически показан на рис. 3. Принцип его действия аналогичен рассмотренному выше прибору Польди с той разницей, что удар наносится взмахом самого эталонного молотка.

 

 

Рис. 3. Схема молотка К. П. Кашкарова:

1 - головка; 2 - рукоятка; 3 - эталонный стержень; 4 - стальной шарик; 5 - стакан; 6 - торец стержня 3; 7 - испытуемый материал; 8 - пружина

 

При ударе боек (стальной шарик диаметром S мм) оставляет на поверхности исследуемого бетона вмятину диаметром dб, а на эталонном стержне (круглого сечения из Ст. 3 диаметром 10 мм) - отпечаток диамет­ром dэт. Для десяти ударов, нанесенных по проверяемому элементу с уда ленными штукатурными и окрасочными слоями, определяется усредненное отношение dб/dэт; прочность бетона оценивается по корреляционной зави­симости между dб/dэт и пределом прочности бетона на сжатие, устанавли­ваемой экспериментально. При этом должны учитываться конкретные ус­ловия изготовления конструкции и твердения бетона, сроки испытаний, ше­роховатость, влажность и другие особенности состояния поверхности кон­струкции. Для эксплуатируемых сооружений указанная зависимость долж­ка быть уточнена на образцах, выбуренных из соответствующих элементов.

Эталонный молоток рекомендуется для разных операций: оценок отпускной прочности бетонных изделий на заводах железобетонных конст­рукций, прочности бетона при передаче напряжения от арматуры на бетон в предварительно напряженных железобетонных конструкциях, коэффици­ента изменчивости прочности бетона в изделиях и конструкциях (что осо­бенно существенно при освидетельствованиях сооружений) и т. д.

Одним из наиболее простых приспособлений для сравнительной оценки прочности бетона является молоток И. Л. Физделя. Ударная часть этого стального молотка весом 250 г заканчивается шариком из твердой стали, легко вращающимся в гнезде. По диаметру отпечатков, полученных при ударе, определяют прочность бетона по эмпирическому графику. Ре­зультаты, несмотря на их ориентировочность, все же полезны в производственных условиях. Пользование молотком при некотором навыке не вы­зывает затруднений.

Оценка прочности бетона склерометром. Приборы этого типа применяются главным образом за рубежом. Из их числа наиболее известен прибор Шмидта (Швейцария).

В этих приборах, так же как вударнике Шора для металла, о ха­рактеристиках материала судят по величине отскока стального бойка. От­скок фиксируется указателем на шкале. Удар наносится не непосредствен­но по исследуемой поверхности бетона, а воспринимается наконечником прибора, прижатого к конструкции. Этот промежуточный стальной элемент необходим, поскольку величина отскока при резкой разнице модулей упру­гости соударяемых материалов становится трудносопоставимой. Удар осуществляется спуском пружины, а не свободным падением бойка, как у Шора, что позволяет испытывать любым образом ориентированные по­верхности. Прибор удобен в работе и дает довольно четкие результаты.

Оценка прочности древесины

Метод ударных отпечатков (А. Х.Шевцов). О прочности древе­сины сулят по диаметру отпечатка (вмятины), появляющегося на гладко оструганной поверхности исследуемого элемента при падении стального шарика диаметром 25 мм с высоты 50 см со специальной подставки. Для проб на вертикальных и наклонных гранях применяется спуск горизон­тально оттянутого шарика (рис.4). скрепленного с нитью длиной 50 см.

Диаметры отпечатка фиксируются с помощью белой и копи­ровальной бумаг, помещенных на исследуемую поверхность в месте удара. Для перехода от диаметра отпечатка к прочности материала пользуются экспериментальными кривыми, построенными для разных сортов древе­сины. Для учета влияния влажности вводится поправочный коэффициент.

 

 

Рис.4. Испытание ударом шарика по вер­тикальной поверхности деревянного эле­мента:

1- испытуемый элемент;

2- натянутая нить;

3- стальной шарик;

4- положение того же шарика в момент удара

Акустические методы

 

Акустические методы основаны на возбуждении упругих механи­ческих колебаний. По параметрам этих колебаний и условиям их распро­странения судят о физико-механических характеристиках и состоянии ис­следуемого материала.

В зависимости от частоты колебаний акустические методы делятся на ультразвуковые (при частотах от 20 тыс. Гц и выше) и методы, основанные на использовании колебаний звуковой (до 20 тыс. Гц) и инфразвуковой (до 20 Гц) частот.

 

Ультразвуковые методы

Побуждение и прием колебаний. Для возбуждения ультразвуко­вых волн на поверхности исследуемого материала устанавливают преобра­зователи переменного электрического тока, создающие колебания. Чаше всего применяются преобразователи, действующие по принципу пъезоэффекта. При этом для возбуждения колебаний используется так называемый «обратный», а в преобразователях для приема колебаний - «прямой» пьезоэффекты.

Поскольку воздушные прослойки препятствуют передач


Поделиться с друзьями:

Опора деревянной одностоечной и способы укрепление угловых опор: Опоры ВЛ - конструкции, предназначен­ные для поддерживания проводов на необходимой высоте над землей, водой...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Адаптации растений и животных к жизни в горах: Большое значение для жизни организмов в горах имеют степень расчленения, крутизна и экспозиционные различия склонов...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.192 с.