Поведение систем в равновесной и неравновесной областях — КиберПедия 

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Поведение систем в равновесной и неравновесной областях

2018-01-04 237
Поведение систем в равновесной и неравновесной областях 0.00 из 5.00 0 оценок
Заказать работу

Неравновесное состояние Равновесное состояние

Система “адаптируется” к внешним Для перехода от одной структуры к

условиям, изменяя свою структуру другой требуются сильные возмущения

или изменения граничных условий

Множественность стационарных Одно стационарное состояние

состояний

Чувствительность к флуктуациям Нечувствительность к флуктуациям

(небольшие влияния приводят к

большим последствиям, внутренние

флуктуации становятся большими)

Все части действуют согласованно Молекулы ведут себя независимо друг

от друга

Фундаментальная неопределенность Поведение системы определяют линейные зависимости

 

Понятие равновесия является одним из основных положений в науке. С точки зрения такой науки, как синергетика (от греч. synergos – вместе действующий; междисциплинарная область исследований процессов самоорганизации и самодезорганизации в различных системах, в том числе в живых, например, в популяциях), имеются следующие различия между равновесной и неравновесной системами:

1. Система реагирует на внешние условия.

2. Поведение системы случайно и не зависит от начальных условий, но зависит от предыстории.

3. Приток энергии создает в системе порядок, следовательно, энтропия ее уменьшается.

4. Система ведет себя как единое целое.

Система может находиться в состоянии равновесности и неравновесности; при этом ее поведение существенно различается (табл. 2.2).

В соответствии со вторым законом термодинамики к равновесному состоянию при-

ходят все закрытые системы, то есть системы, не получающие энергии извне. При отсутствии доступа энергии извне система стремится к состоянию равновесия, при котором энтропия равна нулю. В случае когда система находится в неравновесном состоянии, создаются условия формирования новых структур, для которых необходимо следующее: 1) открытость системы; 2) неравновесное ее состояние; 3) наличие флуктуаций. Чем сложнее система, тем более многочисленны типы флуктуаций, которые могут привести ее в неустойчивое состояние. Однако в сложных системах существуют связи между частями, которые позволяют системе сохранять устойчивое состояние. Соотношением между устойчивостью, обеспечивающейся взаимосвязью между частями, и неустойчивостью из-за наличия флуктуации определяется порог устойчивости системы. Если этот порог превышается, система попадает в критическое состояние, которое называется точкой бифуркации. В данной точке система становится неустойчивой относительно флуктуаций и может перейти в новое состояние устойчивости. Это положение имеет огромное значение в эволюции экосистем. В точке бифуркации система как бы колеблется между выбором одного из нескольких путей эволюции.

Подавляющее большинство систем в природе относится к открытым, обменивающимся с окружающей средой энергией, веществом и информацией. Главенствующая роль в природных процессах принадлежит не порядку, стабильности и равновесию, а неустойчивости и неравновесности, то есть все системы флуктуируют. В точке бифуркации система не выдерживает и разрушается, и в этот момент времени невозможно предсказать, в каком состоянии она будет находиться: станет ли состояние системы хаотическим или она перейдет на новый, более высокий уровень неупорядоченности.

Принцип равновесия в живой природе играет огромную роль. Смещение равновесия между видами в одну сторону может привести к исчезновению обеих видов. Например, уничтожение хищников может привести к уничтожению жертв, давление которых на окружающую среду может возрасти до такой степени, что им не хватит пищи. В природе наблюдается огромное количество равновесий, которые поддерживают общее равновесие в природе.

Равновесие в живой природе не статично, а динамично и представляет собой движение вокруг точки устойчивости. Если данная точка устойчивости не меняется, то такое состояние называется гомеостазом (от греч. homoios-тот же самый, погожий и stasis-неподвижность, состояние). Гомеостаз – способность организма или системы поддерживать устойчивое (динамическое) равновесие в изменяющихся условиях среды.

Согласно принципу равновесия любая естественная система с проходящим через нее потоком энергии склонна развиваться в сторону устойчивого состояния. Гомеостаз, существующий в природе, осуществляется автоматически за счет механизмов обратной связи. Молодые системы с неустоявшимися связями, как правило, подвержены резким колебаниям и менее способны противостоять внешним возмущениям по сравнению со зрелыми системами, компоненты которых успели приспособиться друг к другу, то есть прошли эволюционные приспособления.

Естественное равновесие означает, что экосистема сохраняет свое стабильное состояние и некоторые параметры неизменными, несмотря на воздействие факторов внешней среды. Так как экосистема представляет собой открытую систему, то ее устойчивое состояние означает, что поступление вещества и поток энергии на входе и выходе сбалансированы.

Под воздействием на экосистему внешних факторов она переходит от одного состояния равновесия к другому. Такое состояние называется устойчивым равновесием. По многочисленным данным, экологическая обстановка на нашей планете не всегда была одной и той же. Более того, она испытывала резкие перемены всех ее компонентов. Это можно продемонстрировать на примере появления кислорода в атмосфере. Известно, что ультрафиолетовое излучение Солнца, губительное для живых организмов, породило химическую эволюцию, благодаря которой возникли аминокислоты. Под воздействием ультрафиолетового излучения процессы разложения водяного пара привели к образованию кислорода и создали слой озона, который препятствовал проникновению ультрафиолетовых лучей на поверхность Земли. До тех пор, пока не было атмосферного кислорода, жизнь могла развиваться только под защитой слоя воды, который был ограничен глубиной, на которую проникали солнечные лучи. Под воздействием давления отбора появились фотосинтезирующие организмы, которые синтезировали органическое вещество и кислород. Первые многоклеточные организмы появились после того, как содержание кислорода в атмосфере достигло 3% от современного содержания. Образование атмосферы, содержащей кислород, привело к новому состоянию устойчивого равновесия. Благодаря способности зеленых растений водных экосистем продуцировать кислород в количествах, превышающих их потребности, создались условия для возникновения жизни на суше и быстрого заселения организмами всей поверхности Земли. Это в свою очередь создало условия, при которых потребление и образование кислорода уравнялось и достигло отметки 20%. Затем наблюдались колебания отношений кислорода к углекислому газу, и, вероятно, на определенной стадии развития произошло повышение содержания углекислого газа в атмосфере, что послужило толчком к образованию ископаемого топлива. Далее соотношение кислорода и углекислого газа опять пришло в колебательное стационарное состояние. Бурное развитие промышленности, деградация и преобразование человеком экосистем, сжигание ископаемого топлива и в результате – избыточное образование углекислого газа может опять сделать это соотношение нестабильным.

Следовательно, равновесие - это неотъемлемый элемент функционирования природы, с которым человек должен считаться как с объективным законом природы, значение которого он только начинает осознавать.

По виду обмена веществом и энергией с окружающей средой системы классифицируют следующим образом: 1) изолированные системы (обмен невозможен); 2) замкнутые системы (обмен веществом невозможен, а обмен энергией может происходить в любой форме); 3) открытые системы (возможен любой обмен веществом и энергией).

Системы, которые взаимосвязаны потоками вещества, энергии и информации, носят название динамических. Любая живая система представляет собой динамическую открытую систему.

Принцип эволюции: возникновение, существование и развитие всех экосистем обусловлено эволюцией. Динамические самоподдерживающиеся системы эволюционируют в сторону усложнения и возникновения системной иерархии (образование подсистем). Эволюция любой экосистемы ведет к увеличению суммарного потока энергии, проходящей через нее. С увеличением разнообразия и сложности системы происходит ускорение эволюции, что выражается в более быстром прохождении ступеней, эквивалентных по качественным сдвигам (Акимова, Хаскин, 1998).

Все без исключения экосистемы и даже самая крупная – биосфера- являются открытыми, поэтому для своего функционирования они должны получать и отдавать энергию. По этой причине концепция экосистемы должна учитывать существование связанных между собой и необходимых для функционирования и самоподдержания потоков энергии на входе и выходе, то есть реальная функционирующая экосистема должна иметь вход и, в большинстве случаев, пути оттока переработанной энергии и веществ.

Масштабы изменений среды на входе и выходе сильно варьируются и зависят от:

- размеров системы: чем она меньше, тем больше зависит от внешних воздействий;

- интенсивности обмена: чем интенсивнее обмен, тем больше приток и отток;

- сбалансированности автотрофных и гетеротрофных процессов: чем сильнее нарушено это равновесие, тем больше должен быть приток энергии извне;

- стадии и степени развития системы: молодые системы отличаются от зрелых.

Энергия солнечного света поступает в экосистему, где фотоавтотрофными организмами превращается в химическую энергию, используемую для синтеза органических соединений из неорганических. Поток энергии направлен в одну сторону: часть поступающей энергии Солнца преобразуется сообществом и переходит на качественно более высокую ступень, трансформируясь в органическое вещество, которое представляет собой более концентрированную форму энергии, чем солнечный свет; большая же часть энергии проходит через систему и покидает ее. В принципе, энергия может накапливаться, затем высвобождаться или экспортироваться, как показано на схеме (рис. 2.1), но не может использоваться вторично.

В отличие от энергии элементы питания и вода, необходимые для жизни, могут использоваться многократно. После отмирания живых организмов органические вещества разлагаются и опять превращаются в неорганические соединения. В совокупности экосистему можно представить как единое целое, в котором биогенные вещества из абиотического компонента включаются в биотический и обратно, то есть происходит постоянный круговорот веществ с участием живого (биотического) и неживого (абиотического) компонентов.

 

Э К О С И С Т Е М А

 

Солнце Энергия _____ БИОТИЧЕСКИЙ __ _ Тепловая

Света КОМПОНЕНТ энергия

       
 
   
 


Биогенные элементы

 

АБИОТИЧЕСКИЙ

КОМПОНЕНТ

 

 
 


Поток энергии

Круговорот биогенных элементов

Рис. 2.1 Функциональная схема экосистемы

Для стабильного и длительного функционирования экосистемы особенно важное значение имеют обратные связи, обеспечивающие ее авторегуляцию и саморазвитие. Поэтому независимо от вида системы ее функционирование возможно только при наличии прямых (взаимная стимуляция роста и развития организмов) или обратных (например, угнетение развития популяции в результате давления хищника) связей.

В саморегулирующихся системах, к которым относятся и экосистемы, важная роль принадлежит отрицательным обратным связям. На принципе отрицательной обратной связи базируются все механизмы физиологических функций в любом организме и поддержание постоянства внутренней среды и внутренних взаимосвязей любой саморегулирующейся системы.

Рассмотрим это положение на примере самоочищения водоемов. Допустим, что под влиянием внешних факторов (поступление в водоем плодородной почвы и элементов питания) началось усиленное развитие фитопланктона. Это приводит к усилению роста зоопланктона и уменьшению концентрации минеральных веществ, что способствует более быстрому выеданию фитопланктона и уменьшению его роста. Через некоторое время происходит снижение размножения животных из-за недостатка пищи. Временное увеличение биомассы гидробионтов ведет к нарастанию массы детрита, который, являясь пищей для бактерий, вызывает их усиленное размножение. Бактерии, в свою очередь, разлагают детрит и тем самым высвобождают элементы питания. Таким образом, цикл замыкается и в водоеме вновь появляются условия для усиленного развития фитопланктона. Система в целом имеет отрицательный обратный знак.

Положительные обратные связи, наоборот, не способствуют регуляции, а вызывают дестабилизацию систем, приводя их либо к угнетению и гибели, либо к ускорению роста, за которым, как правило, следуют срыв и разрушение. Например, в любом растительном сообществе плодородие почвы, урожай растений, количество отмерших растительных остатков и образовавшегося гумуса составляет контур обратных положительных связей. Такая система находится в неустойчивом равновесии, так как потеря почвы и элементов питания в результате эрозии или изъятие части урожая без возмещения выноса питательных веществ дает толчок к снижению плодородия почв и продуктивности растений. С этим явлением столкнулись наши предки в эпоху подсечно-огневого земледелия, когда в результате изъятия продукции без возмещения выноса резко снижалось плодородие почв, что вынуждало людей оставлять одни участки и осваивать новые.

В сложных экосистемах всегда имеется сочетание контуров обоих знаков. В случае наличия контуров с большим числом связей реализуется правило, которое гласит: при четном числе последовательных отрицательных связей контур приобретает положительную обратную связь (минус и минус дают плюс). Однако развитие и устойчивое функционирование экосистем в итоге определяется наличием контуров обратной связи. Для изменения поведения системы важное значение имеет добавление или изъятие связей, которые могли бы изменить знак системы.

Таким образом, составляющие экосистемы – это поток энергии, круговорот веществ, биотический и абиотический компоненты и управляющие петли обратной связи.

 

2.4. Роль структурных элементов экосистемы в ее функционировании

 

Особенности потока энергии и биогенных элементов в экосистемах определяют продуценты, консументы и редуценты.

Продуценты (от лат. Producentis – производящий, создающий) представлены автотрофными организмами, которые в зависимости от источников энергии, используемых на синтез органических веществ в клетке, разделяются на две группы: фототрофы и хемотрофы.

К фототрофам относятся наземные зеленые растения, водоросли, фототрофные бактерии, способные к осуществлению фотосинтеза. Наиболее важное значение в производстве органического вещества на планете принадлежит наземным зеленым растениям, использующим солнечную энергию за счет реакции фотосинтеза.

С химической точки зрения процесс фотосинтеза включает фиксацию части солнечного света в виде потенциальной, или “связанной”, энергии. Окислительно-восстановительные реакции фотосинтеза с участием солнечной энергии можно обобщить следующим уравнением:

nCO2 + 2nH2O_энергия солнца_____________________(CH2O)n + nO2

У зеленых растений вода окисляется с высвобождением газообразного кислорода, а диоксид углерода восстанавливается до углеводов (CH2O)n с высвобождением воды. У высших растений имеются различные биохимические пути восстановления CO2, что имеет важное значение и в экологии: с этим связаны физиологические и морфологические особенности растений, их распространение, приспособленность к различным условиям среды обитания и продуктивность.

Большинство растений фиксируют CO2 по C3-пентофосфатному пути, или циклу Кальвина. Часть растений восстанавливает диоксид углерода по циклу C4-дикарбоновых кислот. Эти растения имеют специфическое морфологическое отличие: в обкладке проходящих пучков (вокруг жилок листа) у них имеются крупные хлоропласты.

В зависимости от того, по какому циклу осуществляется синтез органических соединений, и в соответствии с характером протекающих процессов фотосинтеза выделяют C3- или C4-растения.

 

I Opt II Opt III Opt

 

Min Max Min Max

 

Активность (рост) Температура

 

Рис. 2.2 Зависимость изменений интенсивности фотосинтеза у C3- и C4- растений от освещенности и температуры (по Ю. Одуму, 1975): I – C3- растения; II – диапазон существования растений; III – C4- растения.

 

Сравнение реакции C3- и C4- растений на свет показывает (рис. 2.2), что у C3-растений максимальная интенсивность фотосинтеза обычно наблюдается при умеренной освещенности и температуре; высокие температуры и освещенность подавляют фотосинтез. C4- растения адаптированы к яркому свету и высокой температуре и в этих условиях значительно превосходят по продуктивности C3- растения. Они также эффективнее используют воду: на производство 1г. сухого вещества им требуется менее 400г. воды, а C3- растениям – от 400 до 1000г. Кроме того, C4-растения также не ингибируются избытком кислорода (в отличие от C3-растений).

C4-растения преобладают среди растительности пустынь и степей, в теплом и тропическом климате, в редких лесах, а также на севере, где освещенность и температура низкие. Среди них преобладают растения семейства злаковых (кукуруза, сорго), но встречаются и некоторые другие (например, сахарный тростник).

Несмотря на то, что эффективность фотосинтеза на единицу листовой поверхности у C3- растений ниже, чем у C4-растений, они создают большую часть фотосинтетической продукции на Земле. Связано это, видимо, с лучшей приспособленностью растений с таким видом фотосинтеза к существованию в смешанных сообществах, где освещенность, температура и другие факторы ближе к средним значениям.

К C3-растениям относится и подавляющее число растений, из которых человек получает продукты питания, - рис, пшеница, картофель, овощи. Они произрастают преимущественно в умеренной зоне северного полушария.

В отличие от зеленых растений донором электронов у пурпурных и зеленых серобактерий при фотосинтезе служат неорганические соединения серы, и кислород при этом не выделяется:

CO2 + H2S ____свет___________(CH2O)n + S

Цианобактерии, подобно высшим растениям и водорослям, выделяют при фотосинтезе молекулярный кислород.

В глобальном плане вклад фототрофных микроорганизмов в синтез органического вещества невелик. Но они могут жить в условиях, неблагоприятных для большинства зеленых растений, и играют важную роль в круговороте некоторых веществ. Например, зеленые и пурпурные серобактерии играют значительную роль в круговороте серы. Фототрофные микроорганизмы встречаются в осадках или водах – там, куда практически не проникает свет. Бактериальный фотосинтез может быть полезен в загрязненных и эвтрофныхводах. По этой причине к нему сейчас усиливается интерес. Но он не может заменить фотосинтез растений, от которого зависит жизнь сложных аэробных организмов на Земле.

Хемотрофы – микроорганизмы, ассимилирующие органические соединения путем хемосинтеза. Процесс синтеза органического вещества осуществляется за счет энергии, получаемой путем окисления аммиака, сероводорода и других веществ. К хемосинтезирующим организмам относятся серобактерии (например, виды Thiobacillus, окисляющие сероводород), нитрифицирующие бактерии (виды родов Nitrosomonas, Nitrosospira, Nitrosococcus, превращающие аммиак в нитриты, а затем в нитраты), и др. Хемотрофы играют небольшую роль в первичном продуцировании органического вещества, но они имеют важное значение в круговороте химических элементов на планете.

Для функционирования экосистемы не менее важное значение имеет не только синтез органического вещества, но и его разложение, которое осуществляется гетеротрофами.

Гетеротрофные организмы – организмы, использующие в качестве энергии и источника питания органические вещества, синтезированные другими организмами. К ним относятся все животные, грибы, большинство бактерий и бесхлорофильные наземные растения и водоросли. В экосистемах гетеротрофные организмы разделяют на консументы и редуценты.

Консументы (от лат. Consumo – потребляю) – потребители органического вещества, произведенного автотрофами. Подразделяются на консументов первого порядка (растительноядные животные), второго, третьего и т.д. (хищники).

Редуценты (от лат. Reducentis – возвращающий, восстанавливающий) – организмы, питающиеся мертвым органическим веществом и подвергающие его минерализации до более или менее простых соединений, которые затем используются продуцентами. К редуцентам относятся главным образом бактерии и грибы. В зависимости от того какие организмы разлагают органическое вещество и в каких условиях, выделяют два процесса: дыхание (аэробное и анаэробное) и брожение.

Аэробное дыхание протекает в присутствии атмосферного кислорода, который служит акцептором электронов (окислителем).

Аэробное дыхание можно сравнить с процессом, обратным фотосинтезу, то есть оно направлено на разложение синтезированного органического вещества до углекислого газа и воды с высвобождением энергии. С помощью этого процесса высшие растения и многие виды животных получают энергию для поддержания жизнедеятельности построения новых клеток собственного организма. Однако процесс аэробного дыхания может идти не до конца, и в результате такого незавершенного дыхания образуются органические соединения, содержащие некоторое количество энергии, которая в дальнейшем может быть использована другими организмами.

Анаэробное, или бескислородное, дыхание происходит при отсутствии в окружающей среде свободного кислорода. Оно протекает значительно медленнее, чем аэробное, и при этом выделяется значительно меньше энергии с единицы субстрата. К анаэробному дыханию приспособлены денитрифицирующие бактерии, некоторые кишечные паразиты, большинство гетеротрофных почвенных микроорганизмов. Окислителем (акцептором электронов) служит не кислород, а другое органическое и неорганическое соединение.

Анаэробное дыхание служит основой жизнедеятельности главным образом сапрофитов (бактерии, дрожжи, плесневые грибы, простейшие), хотя этот процесс может встречаться и в некоторых тканях высших растений. Например, метановые бактерии разлагают органические соединения, образуя метан (CH4) путем восстановления органического углерода.

Брожение - процесс анаэробного ферментативного расщепления органического вещества различными микроорганизмами, при котором высвободившаяся энергия используется для биосинтеза различных жизненно важных аминокислот, белков. При брожении окисляемое органическое соединение само служит окислителем (акцептором электронов).

Примером брожения являются процессы, протекающие с участием дрожжей. Они имеют практическую ценность для человека, участвуют в процессах почвообразования (разложение растительных остатков).

Многие группы бактерий способны и к аэробному, и к анаэробному дыханию, но конечные продукты этих двух реакций различны и количество высвобождающейся энергии при анаэробном дыхании значительно меньше.

Несмотря на то, что анаэробные сапрофаги играют малозаметную роль в сообществе, они важны для экосистемы, так как только они способны к дыханию в лишенных света бескислородных слоях почвы и подводных осадков. Они перехватывают энергию и вещества, которые затем диффундируют вверх и становятся доступными для аэробов.

Восстановленные органические и неорганические соединения, синтезированные микроорганизмами в анаэробных условиях, служат запасом углерода для фиксирования энергии в процессе фотосинтеза. Позже в аэробных условиях эти восстановленные соединения используются как субстрат аэробными хемолитотрофами и гетеротрофами. Следовательно, анаэробные и аэробные организмы тесно взаимосвязаны и функционально дополняют друг друга.

По видовому разнообразию гетеротрофы значительно превосходят автотрофов и могут существовать в самых разнообразных условиях. В совокупности гетеротрофы способны разлагать все вещества, синтезируемые автотрофами, в том числе и многие соединения, синтезированные человеком с помощью различных технологий. Их роль в биосфере заключается в разложении синтезированного органического вещества до более простых соединений, благодаря чему поддерживается круговорот химических элементов в природе.

Общей чертой всех экосистем является взаимодействие автотрофных и гетеротрофных компонентов. Организмы, участвующие в различных процессах круговорота, разделены в пространстве: автотрофные процессы наиболее активно протекают в верхнем ярусе, куда проникает солнечный свет, гетеротрофные – в нижнем ярусе, где в почвах и осадках накапливаются органические вещества.

Следует отметить, что основные функции компонентов экосистемы частично не совпадают по времени. Это обусловлено тем, что между продуцированием органического вещества автотрофными организмами и его потреблением гетеротрофами существует определенный временной разрыв. Например, основной процесс в пологе леса – фотосинтез. После фотосинтеза органического вещества лишь небольшая его часть

Немедленно и непосредственно пользуется самими растениями, растительноядными животными и паразитами, питающимися растениями. Большая же часть синтезированного органического вещества в виде древесины, листьев, семян не подвергается немедленному потреблению и постепенно переходит в подстилку и почву, вследствие чего образуется обособленная гереротрофная среда. Накопленное таким образом органическое вещество может быть использовано в зависимости от условий через многие недели, месяцы, годы или даже тысячелетия, как, например, горючие ископаемые.

Для функционирования любой экосистемы необходимы следующие компоненты: солнечная и другие виды энергии, вода, элементы питания (органические и неорганические соединения), которые содержатся в почвах, донных осадках и воде, автотрофные и гетеротрофные организмы, образующие биотические пищевые цепи. Функционирование наземных и водных экосистем сходно, но их составляющие неодинаковы.

Живые и неживые части экосистем тесно сплетены между собой в единый комплекс. Большая часть биогенных элементов (углерод, азот, фосфор и др.) и органических соединений образуют постоянный поток между живым и неживым. Однако есть соединения, которым присущи только одному из этих состояний. Например, АТФ (аденозин трифосфат) – вещество, содержащее большое количество энергии, встречается только в живых клетках. Такие важнейшие биологические соединения, как, например, ДНК, которая представляет собой генетический материал клеток, и хлорофиллы, встречаются внутри и вне клеток, но свои жизненные функции сохраняют только в живых клетках.

 


Поделиться с друзьями:

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...

Архитектура электронного правительства: Единая архитектура – это методологический подход при создании системы управления государства, который строится...

Механическое удерживание земляных масс: Механическое удерживание земляных масс на склоне обеспечивают контрфорсными сооружениями различных конструкций...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.049 с.