Аналогично, в методе правых прямоугольников — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

История развития пистолетов-пулеметов: Предпосылкой для возникновения пистолетов-пулеметов послужила давняя тенденция тяготения винтовок...

Аналогично, в методе правых прямоугольников

2017-12-11 251
Аналогично, в методе правых прямоугольников 0.00 из 5.00 0 оценок
Заказать работу

S i = h f (x i), i = 1,2,..., n; . (6.3)

и в методе средних прямоугольников

S i = h ), i = 0,1,2,..., n -1; , (6.4)

где , i = 0,1,2,..., n -1.

Приведенные формулы для S являются вычислительными формулами методов прямоугольников.

На рис.6.5. приведена блок-схема вычисления определенного интеграла методом средних прямоугольников.

Рис.6.5. Алгоритм метода средних прямоугольников

Алгоритмы для методов левых и правых прямоугольников отличаются от изображенного на рис.6.5 лишь одним блоком (он выделен жирной линией). Для метода левых прямоугольников здесь должно стоять X=A, для метода правых прямоугольников должно быть X=A+h.

Оценим точность этих методов. В методе средних прямоугольников для каждого интервала разбиения получаем c учетом выражения для S i в (6.4):

. (6.5)

Для оценки R i разложим функцию f (x) в ряд Тейлора около средней точки

(6.6)

В малой окрестности точки этот ряд с высокой точностью представляет функцию f (x) при небольшом количестве членов разложения. Поэтому, подставляя под знак интеграла вместо f (x) ее тейлоровское разложение (6.6) и интегрируя его почленно, можно вычислить интеграл с любой наперед заданной точностью. T.е. точное значение интеграла на интервале [ x i, x i+1] рав­но:

Подставим пределы интегрирования:

или, так как :

Все члены полученного при интегрировании ряда, имеющие (x - x i) в четной степени, обращаются в нуль. Поэтому получаем:

(6.7)

Сравнивая (6.5) и (6.7), можно записать выражение для погрешности R i:

При малой величине шага интегрирования h основной вклад в значение R i дает первое слагаемое, которое называется главным членом погрешности вычисления интеграла на интервале [ x i, x i+1] и обозначается R 0i:

. (6.8)

Главный член полной погрешности для интеграла на всем промежутке [ a,b ] определится как сумма:

. (6.9)

Здесь использован тот же метод средних прямоугольников, но для функции .

Степень шага h, которой пропорциональна величина R 0, называется порядком метода интегрирования. Как видно из (6.9 ), метод средних прямоугольников имеет второй порядок.

Аналогично проведем оценку метода левых прямоугольников. Разложим подынтегральную функцию в ряд Тейлора в окрестности точки x = x i:

Интегрируя это разложение почленно на интервале [ x i, x i+1] получаем

Здесь первое слагаемое есть приближенное значение интеграла, вычисленное по методу левых прямоугольников (см. формулу (6.2)), а второе слагаемое является главным членом погрешности:

.   (6.10)

Тогда на всем промежутке интегрирования [ a,b ] главный член погрешности R 0 получается суммированием частичных погрешностей R 0i:

,   (6.11)

т.е. метод левых прямоугольников имеет первый порядок. Метод правых прямоугольников также имеет первый порядок.

Сравнение (6.9) и (6.11) показывает, что метод средних прямоугольников имеет меньшую погрешность по сравнению с методом левых или правых прямоугольников и за счет коэффициента в знаменателе (24 > 2), и за счет интеграла от производной, т.к. для большинства функций выполняется неравенство

.

Следовательно, использование метода средних прямоугольников является предпочтительным, но использовать его удается не всегда. Если значения f (x) определяются из эксперимента в дискретном наборе узлов, то метод средних прямоугольников напрямую при­менить нельзя из-за отсутствия значений f (x) в срединных точках. В этой ситуации приходится применять либо какие-нибудь средства интерполяции, что приводит к дополнительным расходам машинного времени и памяти, либо другие методы численного интегрирования.

Метод трапеций

В этом методе подынтегральная функция f (x) на интервале [ x i, x i+1] заменяется полиномом первой степени, т.е. наклонной прямой линией. Обычно эта прямая проводится через значения f (x) на границах интервала (рис.6.6). В этом случае приближенное значение частичного интеграла определяется площадью трапеции:

Рис.6.6. Геометрическая интерпретация метода трапеций , т.е. , а численное значение интеграла на всем [ a,b ] . Это вычислительная формула метода трапеций.   (6.12)     (6.13)

Блок-схему алгоритма метода трапеций предлагается студентам разработать самим.

Оценим погрешность R i. Для этого разложим функцию f (x) в ряд Тейлора около точки x i:

(6.14)

Тогда

(6.15)

С помощью разложения (6.14) вычислим подынтегральную функцию в точке x i+ h:

откуда

(6.16)

Подставляя произведение (6.16) в выражение (6.15), получим

(6.17)

Сравнивая (6.12) и (6.17), получаем выражение для главного члена погрешности частичного интеграла

.

Тогда главный член полной погрешности метода трапеций имеет вид

,   (6.18)

т.е. метод трапеций имеет также второй порядок, но его погрешность в два раза больше, чем в методе средних прямоугольников, поэтому, если подынтегральная функция задана аналитически, то предпочтительнее из методов второго порядка использовать метод средних прямоугольников.


Поделиться с друзьями:

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...

Общие условия выбора системы дренажа: Система дренажа выбирается в зависимости от характера защищаемого...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.012 с.