Индивидуальные очистные сооружения: К классу индивидуальных очистных сооружений относят сооружения, пропускная способность которых...

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Защитные функции эритроцита. Функции кардиомиоцита и миофиламента.

2017-11-17 666
Защитные функции эритроцита. Функции кардиомиоцита и миофиламента. 0.00 из 5.00 0 оценок
Заказать работу

Вверх
Содержание
Поиск

Защитная функция эритроцитов заключается в том, что они играют существенную роль в специфическом и неспецифическом иммунитете и принимают участие в сосудисто-тромбоцитарном гемостазе, свертывании крови и фибринолизе.

Они способны связывать токсины (вредные, ядовитые для организма вещества) за счет наличия на поверхности эритроцитов специальных веществ белковой природы — антител.

Сущ-т 3 вида кардиомиоцитов:

рабочие, или типичные, или же сократительные, кардиомиоциты, атипичные кардиомиоциты (сюда входят пейсмекерные, проводящие и переходные кардиомиоциты, а также секреторные кардиомиоциты.

Типичные (рабочие, сократительные) кардиомиоциты – образуют основную часть миокарда, соединены друг с другом в цепочки основаниями цилиндров. Эти зоны называют вставочными дисками, в которых выделяют десмосомальные контакты и нексусы (щелевидные контакты). Десмосомы обеспечивают механическое сцепление, которое препятствует расхождению кардиомиоцитов. Щелевидные контакты способствуют передаче сокращения от одного кардиомиоцита к другому.

Кардиомиоциты, связываясь с помощью вставочных дисков, образуют сократительные комплексы, которые способствуют синхронизации сокращения, между кардиомиоцитами соседних сократительных комплексов образуются боковые анастомозы.

Функция типичных кардиомиоцитов: обеспечение силы сокращения сердечной мышцы.

Проводящие (атипичные) кардиомиоциты обладают способностью к генерации и быстрому проведению электрических импульсов. Они образуют узлы и пучки проводящей системы сердца и разделяются на несколько подтипов: пейсмекеры (в синоатриальном узле), переходные (в атрио-вентрикулярном узле) и клетки пучка Гиса и волокон Пуркинье.

Функция атипичных кардиомиоцитов – генерация импульсов и передача на рабочие кардиомиоциты, обеспечивая автоматизм сокращения миокарда.

Секреторные кардиомиоциты находятся в предсердиях, преимущественно в правом; Функция: эндокринная. Выделяют натриуретический гормон, регулирующий артериальное давление. Гормон вызывает потерю натрия и воды с мочой, расширение сосудов, снижение давления, угнетение секреции альдостерона, кортизола, вазопрессина.

Миофибриллы - специальные органеллы, которые обеспечивают сокращение, которое возникает при взаимодействии в них двух основных фибриллярных белков — актина и миозина — при обязательном участии Ca2+. Миофибриллы (миофиламент) слабо обособлены друг от друга, могут расщепляться.

Благодаря свойствам сократительных миофиламенты миокард может изменять силу сокращения зависимости от степени наполнения полостей сердца.

(От поверхности плазмолеммы в глубь кардиомиоцита направлены Т-трубочки, находящиеся на уровне Z-линии. Их мембраны сближены, контактируют с мембранами гладкой ЭПС. Петли последней вытянуты вдоль поверхности миофибрилл и имеют латеральные утолщения (L-системы), формирующие вместе с Т-трубочками триады или диады. В цитоплазме имеются включения гликогена и липидов, особенно много включений миоглобина)

 

Энергетический обмен. Строение и функции АТФ. Энергетическое использование органических веществ. Строение и функционирование митохондрий. Фотосинтез: световая и темновая фазы. Строение и функционирование хлоропласта. Значение фотосинтеза.

Процесс использования поступивших в клетку веществ представляет собой совокупность всех химических реакций, протекающих в клетке. Различают две стороны обменных процессов: пластический и энергетический обмены.

Пластический обмен, или анаболизм, представляет собой совокупность реакций биосинтеза (фотосинтез, биосинтез белка, хемосинтез), протекающих с затратами энергии и обеспечивающих клетку структурным материалом. Энергетический обмен(катаболизм) – это совокупность химических реакций постепенного распада органических соединений, сопровождающихся высвобождением энергии, часть которой расходуется на синтез АТФ. Синтезированная АТФ становится универсальным источником энергии для жизнедеятельности организмов. Она образуется в результате реакции фосфорилирования. АТФ (аденозинтрифосфат) - органическое соединение из группы нуклеозидтрифосфатов, играющее главную роль в целом ряде биохимических процессов, прежде всего в обеспечении клеток энергией. Молекула АТФ представляет собой аденин, к которому присоединены три молекулы ортофосфорной кислоты. Аденин входит в состав многих других соединений, широко распространенных в живой природе, в том числе нуклеиновых кислот. АТФ не играет сколько-нибудь заметной роли в хранении энергии, исполняя скорее транспортные функции в клеточном энергетическом обмене. Применительно к позвоночным животным и человеку, основной ролью АТФ является обеспечение двигательной активности мышечных волокон. Он играет существенную роль в передаче сигнала между нервными клетками, в некоторых других межклеточных взаимодействиях, в регуляции действия ферментов и гормонов. Является одним из исходных продуктов для синтеза протеинов. Митохондрии - это органеллы размером с бактерию (около 1 х 2 мкм). Они найдены в большом количестве почти во всех эукариотических клетках. Митохондрия ограничена двумя мембранами - гладкой внешней и складчатой внутренней, имеющей очень большую поверхность. Складки внутренней мембраны глубоко входят в матрикс митохондрий, образуя поперечный перегородки - кристы. Пространство между внешней и внутренней мембранами обычно называют межмембранным пространством. Главной функцией митохондрий является захват богатых энергией субстратов (жирные кислоты, пируват, углеродный скелет аминокислот) из цитоплазмы и их окислительное расщепление с образованием СО2 и Н2О, сопряженное с синтезом АТФ. Митохондрии поставляют клетке продукты промежуточного метаболизма. Фотосинтез — синтез органических веществ из углекислого газа и воды с обязательным использованием энергии света. Значение фотосинтеза: Атмосфера насыщается кислородом.Кислородное дыхание является самым выгодным способом энергетического обмена. Кислородная атмосфера (за счет озонового экрана) защищает живые организмы от губительного ультрафиолетового излучения. Из атмосферы поглощается углекислый газ, который мог бы вызвать парниковый эффект (перегрев Земли).

Фотосинтез — сложный многоступенчатый процесс; реакции фотосинтеза подразделяют на две группы: реакции световой фазы и реакции темновой фазы. в световую фазу происходит фотолиз воды, который сопровождается тремя важнейшими процессами: 1) синтезом АТФ; 2) образованием НАДФ·Н2; 3) образованием кислорода. Кислород диффундирует в атмосферу, АТФ и НАДФ·Н2 транспортируются в строму хлоропласта и участвуют в процессах темновой фазы. Эта фаза происходит только в присутствии света в мембранах тилакоидов при участии хлорофилла, белков-переносчиков электронов и фермента — АТФ-синтетазы. Темновая фаза протекает в строме хлоропласта. Для ее реакций не нужна энергия света, поэтому они происходят не только на свету, но и в темноте. Реакции темновой фазы представляют собой цепочку последовательных преобразований углекислого газа (поступает из воздуха), приводящую к образованию глюкозы и других органических веществ.

Хлоропласты — пластиды высших растений, в которых идет процесс фотосинтеза. Хлоропласты имеют форму двояковыпуклой линзы, размер их около 4-6 мкм. Находятся они в паренхимных клетках листьев и других зеленых частей высших растений. Снаружи хлоропласт покрыт оболочкой, состоящей из двух липопротеиновых мембран, внешней и внутренней. Обе мембраны имеют толщину около 7нм, они отделены друг от друга межмембранным пространством около 20-30нм. Внутренняя мембрана хлоропластов, как и других пластид образует складчатые впячивания внутрь матрикса или стромы. В зрелом хлоропласте высших растений видны два типа внутренних мембран. Это- мембраны, образующие плоские, протяженные ламеллы стромы, и мембраны тилакоидов, плоских дисковидных вакуолей или мешков. ламелла стромы может представлять собой плоский полый мешок или же иметь вид сети из разветвленных и связанных друг с другом каналов, располагающихся в одной плоскости. Обычно ламеллы стромы внутри хлоропласта лежат параллельно и не образуют связей между собой. Основная функция хлоропластов, состоит в улавливании и преобразовании световой энергии. важной функцией является, усвоение углекислоты в хлоропласте

38. ПОЛ и АФК в клетках, значение электрохимического потенциала мембраны, рецепция в клетках, описание стационарного состояния клетки.

Активные формы кислорода (АФК) образуются во многих клетках в результате последовательного одноэлектронного присоединения 4 электронов к 1 молекуле кислорода. Конечный продукт этих реакций - вода, но по ходу реакций образуются химически активные формы кислорода. Наиболее активен гидроксильный радикал, взаимодействующий с большинством органических молекул. Он отнимает от них электрон и инициирует таким образом цепные реакции окисления. Эти свободнорадикальные реакции окисления могут выполнять полезные функции, например, когда клетки белой крови с участием активных форм кислорода разрушают фагоцитированные клетки бактерий. Но в остальных клетках свободнорадикальное окисление приводит к разрушению органических молекул, в первую очередь липидов, и, соответственно, мембранных структур клеток, что часто заканчивается их гибелью. Поэтому в организме функционирует эффективная система ингибирования перекисного окисления липидов (ПОЛ).Реакции перекисного окисления липидов (ПОЛ) являются свободнорадикальными и постоянно происходят в организме. Свободнора-дикальное окисление нарушает структуру многих молекул. В белках окисляются некоторые аминокислоты. В результате разрушается структура белков, между ними образуются ковалент-ные "сшивки", всё это активирует протеолитические ферменты в клетке, гидролизующие повреждённые белки. Активные формы кислорода легко нарушают и структуру ДНК. Неспецифическое связывание Fe2+ молекулой ДНК облегчает образование гидроксильных радикалов, которые разрушают структуру азотистых оснований. Но наиболее подвержены действию активных форм кислорода жирные кислоты, содержащие двойные связи, расположенные через СН2-группу. Именно от этой СН2-группы свободный радикал (инициатор окисления) легко отнимает электрон, превращая липид, содержащий эту кислоту, в свободный радикал. ПОЛ - цепные реакции, обеспечивающие расширенное воспроизводство свободных радикалов, частиц, имеющих неспаренный электрон, которые инициируют дальнейшее распространение перекисного окисления.

 

 

39. Структурная геномика – содержание и организация геномной информации.

Гено́мика — раздел молекулярной генетики, посвящённый изучению генома и генов живых организмов. Структурная геномика — содержание и организация геномной информации. Имеет целью изучение генов с известной структурой для понимания их функции, а также определение пространственного строения максимального числа «ключевых» белковых молекул и его влияния на взаимодействия. Стр уктурная геномика пытается определить структуру каждого белка, закодированного геномом, вместо того, чтобы сосредоточиться на одном определенном белке. С доступными последовательностями полного генома предсказание структуры может быть сделано более быстро используя комбинацию экспериментальных и моделирующих подходов, особенно потому что доступность большого количества упорядоченных геномов и ранее решенных структур белка позволяет ученым основываться на структурах ранее решенных гомологов.

Поскольку структура белка близко связана с функцией белка, структурная геномика позволяет узнать функции белка. В дополнение к объяснению функций белка структурная геномика может использоваться, чтобы идентифицировать новые сгибы белка и потенциальные цели для изобретения лекарства.

 


Поделиться с друзьями:

История создания датчика движения: Первый прибор для обнаружения движения был изобретен немецким физиком Генрихом Герцем...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Типы сооружений для обработки осадков: Септиками называются сооружения, в которых одновременно происходят осветление сточной жидкости...

Таксономические единицы (категории) растений: Каждая система классификации состоит из определённых соподчиненных друг другу...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.014 с.