Двойное оплодотворение у цветковых растений: Оплодотворение - это процесс слияния мужской и женской половых клеток с образованием зиготы...
Своеобразие русской архитектуры: Основной материал – дерево – быстрота постройки, но недолговечность и необходимость деления...
Топ:
Проблема типологии научных революций: Глобальные научные революции и типы научной рациональности...
Процедура выполнения команд. Рабочий цикл процессора: Функционирование процессора в основном состоит из повторяющихся рабочих циклов, каждый из которых соответствует...
Эволюция кровеносной системы позвоночных животных: Биологическая эволюция – необратимый процесс исторического развития живой природы...
Интересное:
Отражение на счетах бухгалтерского учета процесса приобретения: Процесс заготовления представляет систему экономических событий, включающих приобретение организацией у поставщиков сырья...
Искусственное повышение поверхности территории: Варианты искусственного повышения поверхности территории необходимо выбирать на основе анализа следующих характеристик защищаемой территории...
Наиболее распространенные виды рака: Раковая опухоль — это самостоятельное новообразование, которое может возникнуть и от повышенного давления...
Дисциплины:
2017-11-18 | 473 |
5.00
из
|
Заказать работу |
Содержание книги
Поиск на нашем сайте
|
|
Now that you have spin vectors and torque vectors properly in hand we are ready to consider the L aw of gyroscopic. Ghj – fff
Let us take a close look at the two-degree-of-freedom gyro. With the rotor turning clockwise, the right hand screw rule tells us that the spin vector points down. Imagine that you exert a torque on the inner gimbal axis by pushing into the paper along the outer gimbal axis. Which way is the torque vector pointing? Let us apply the right hand screw rule again: we find that the torque vector points left, along the inner gimbal axis. By pushing on the inner gimbal axis you would expect the gyro to rotate about the inner gimbal axis in the direction of the push. Instead, the gyro will begin to rotate around the outer gimbal axis. This rotation of a gyroscope in response to an applied torque is called precession.
When a torque is applied to a gyroscope the spin v ector tries to move into the torque vector. This means that the gyro will rotate (precess) about an axis in quadrature to both the spin vector and the torque vector.
So when the torque is applied about the inner gimbal axis, the gyro will precess about the outer gimbal axis. Conversely, when the torque is applied about the outer gimbal axis, the gyro will precess about the inner gimbal axis. What happens if torque is applied about the spin axis? The answer is nothing – except that the motor may speed up or slow down. But no precession takes place since the spin vector is already aligned with the torque vector.
The law of gyroscopic precession is so basic to an understanding of gyro operation that it deserves repeating at this point: When torque is applied to a gyro, the spin vector tries to move into the torque vector, giving rise to precession about an axis in quadrature to both the spin and torque vectors.
The relationship between torque and precession is readily calculable. We have learned that F×L=T. Torque can also be computed from another equation.
Torque=inertia × spin velocity × precession rate
T = I × Ws × Wp
The only term we have not yet discussed is inertia. This word can be defined as: "The property of matter by which it will remain at rest — unless acted upon by some external force."
In any case, I × Ws = H, where I = inertia, and Ws = spin velocity, and H = angular momentum. Another way of putting it is:
H = IWs.
“ H”is essentially that property of a spinning wheel which determines its degree of "laziness." The greater the angular momentum, the more the gyro tends to stay fixed in space.
The law of gyroscopes, then, is sometimes written as
Torque= Angular Momentum × Precession Rate.
T = H×Wρ
Just as we can measure the length of a piece of string in many units (inches, centimeters, feet), we can express the parameters of the gyroscopic equations in many units. It is conventional to use the units listed as follows:
Torque (T) ounce- inch (oz- in)
|
Angular momentum (H) gram-centimeter2/second (gm-cm2/sec)
Precession (Wρ) degree/second (deg/sec)
Spin velocity (Ws) revolutions/minute (rev/min)
Inertia (I) gram-centimeter2 (gm-cm2)
However, the parameters expressed in conventional units cannot simply be plugged into the law of gyroscopics, because the units are not consistent, it would be something like mixing apples and oranges.
A consistent set of units would be:
Torque (T) dyne-centimeter (dyne-cm)
Angular momentum (H) gram-centimeter2/second (gm-cm2/sec)
Precession (Wρ) radian/second (rad/sec)
Spin velocity (Ws) radian second (rad/sec)
Inertia (I) gram-centimeter2/second (gm-cm2/sec)
Text 2C. Accuracy
Read and translate the following extract and answer the question.
1.What are the reasons of vertical errors?
2. Define a) random drift;
b) apparent drift.
Accuracy of the vertical must be a consideration. Vertical gyros are needed because we want an accurate reference line in space — and that line must be along the vertical. Any difference between the line and the vertical might cause errors somewhere in the systems referenced to the gyroscope.
There are at least three effects causing vertical error, and the amount of error depends upon the kind of erection control and the erection rate. There are: drift, acceleration and aircraft turns.
Drift errors are both random and apparent. Remember, random drift occurs because the gyro is not a perfect instrument. Apparent drift occurs because a gyro is fixed in space — not fixed relative to the earth. Suppose we have a gyro with a random drift: of 30 deg/hr. That is 0.5 deg/min. Added to this is the apparent drift due to earth's rate: a maximum of 15 deg/hr or 1/4 deg/min. Finally, if the gyro is in an airplane, there is an additional apparent drift due to earth's profile. If the plane is travelling at 300 mi/hr, the apparent drift is about 4.3 deg/hr or 0.07 deg/min. Therefore, the maximum drift would be 0.5 deg/min plus 0.25 deg/min plus 0.07 deg/min or 0.82 deg/min.
Exercises
EX.1. Find in the texts English equivalents for the following words and groups of words.
Как вы помните, во-первых, теперь, теперь когда, итак, поэтому, с другой стороны, во-вторых, поскольку.
EX.2. Read these abbreviations and units.
Oz- sq-in/sec means...
Oz-in-sec means...
Deg/min means …
Rad/sec means...
Rev/min means...
Oz-in means...
Lb-ft means …
Gm-cm means …
EX.3. Finish the following sentences without looking in the texts:
a) Torque is a force…..
b) Vector represents a physical …..
c) The greater the angular momentum …..
d) Drift errors are both…..
EX. 4. Define the terms:
a) inertia
b) precession
c) moment arm
QUESTIONS AND PROBLEMS
1. What is the difference between a scalar and a vector?
2. What is the right hand screw rule?
3. A man pulls against a 2 ft crowbar with a 60 Ib force.
How much torque does he exert?
4. What is the law of gyroscopic precession?
5. State the law of gyroscopics.
6. Just what is precession?
7. Draw a sketch showing a gyro with torques applied.
8. Show how the right hand can be used for finding precession.
|
|
Индивидуальные и групповые автопоилки: для животных. Схемы и конструкции...
Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...
Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...
Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...
© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!