Наибольшее и наименьшее значение функции на отрезке — КиберПедия 

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Семя – орган полового размножения и расселения растений: наружи у семян имеется плотный покров – кожура...

Наибольшее и наименьшее значение функции на отрезке

2017-11-28 214
Наибольшее и наименьшее значение функции на отрезке 0.00 из 5.00 0 оценок
Заказать работу

Пусть функция непрерывна на отрезке [ a, b ]. Тогда на этом отрезке функция достигает наибольшего и наименьшего значений (2-ая теорема Вейерштрасса). Остановимся для определенности на наибольшем значении.

Если оно достигается в некоторой точке между a и b, то это одновременно будет одним из максимумов (очевидно, наибольшим); но наибольшее значение может достигается и на одном из концов промежутка, a или b.

Итак, функция на отрезке [ a, b ] достигает своего наибольшего значения либо на одном из концов этого отрезка, либо в такой внутренней точке этого отрезка, которая является точкой максимума.

То же самое можно сказать и о наименьшем значении функции: оно достигается либо на одном из концов данного отрезка, либо в такой внутренней точке, которая является точкой минимума.

Из предыдущего вытекает следующее правило: если требуется найти наибольшее значение непрерывной функции на промежутке [ a, b ], то надо:

1) найти все максимумы функции на отрезке;

2) определить значения функции f (a) и f (b) на концах отрезка;

3) из всех полученных выше значений функции выбрать наибольшее; оно и будет представлять собой наибольшее значение функции на отрезке.

Аналогичным образом следует поступать и при определении наименьшего значения функции на отрезке.

С помощью теории максимума и минимума решаются многие задачи геометрии, физики и т.д. Рассмотрим некоторые из таких задач.

Задача 1. Затраты на перевозку груза по железной дороге в единицу времени состоят из двух частей: постоянной, равной a, и переменной, пропорциональной v 3, где v – скорость. При какой скорости затраты на перевозку груза будут наименьшими?

Решение. Обозначим расходы на перевозку груза в единицу времени через q. Тогда q = a + bv 3, где b – коэффициент пропорциональности.

Затраты на перевозку грузу составляют

,

где S – расстояние, на которое перевозится груз.

Затраты на перевозку необходимо выбрать наименьшими. Для этого нужно исследовать функцию

на минимум. Находим

, ,

откуда

, , так как b > 0 и S > 0.

При этой скорости движения затраты будут наименьшими так как при v → 0 и v → ∞ затраты неограниченно возрастают.

Задача 2. Дальность S полета снаряда, выпущенного с начальной скоростью v 0из орудия, наклоненного под углом φ к горизонту, определяется формулой

,

где g – ускорение свободного падения. Определить угол φ 0, при котором дальность S будет наибольшей при данной начальной скорости v 0.

Решение. Величина S представляет собой функцию переменного угла φ. Исследуем эту функцию на максимум на отрезке 0 £ φ £ :

,

откуда

,

следовательно, при значении φ = дальность полета S имеет максимум

.

Значения функции S (φ) на концах отрезка [0, ] равны:

S (0) = 0, S () = 0.

Таким образом, найденный максимум и есть искомое наибольшее значение S.

Асимптоты

Очень часто приходится исследовать форму кривой y = f (x), а значит, и характер изменения соответствующей функции при неограниченном возрастании (по абсолютной величине) абсциссы x или ординаты y переменной точки М (x, y) кривой или абсциссы и ординаты одновременно. При этом важным частным случаем является тот, когда исследуемая кривая при удалении ее переменной точки М (x, y) в бесконечность (расстояние этой точки от начала координат неограниченно возрастает) неограниченно приближается к некоторой прямой.

Определение. Если рассеяние δ от точки кривой до некоторой определенной прямой по мере удаления точки в бесконечность стремится к нулю, то эта прямая называется асимптотой кривой (рис.26).

Рис. 26

 

Кривые с бесконечной ветвью могут иметь три вида асимптот: вертикальные (т.е. параллельные оси ординат, рис.26, а), горизонтальные (т.е. параллельные оси абсцисс, рис.26, b) и наклонные (рис.26, с).

 

 

Вертикальные асимптоты

Из определения асимптот следует, что если , или , или , то прямая x = a есть асимптота кривой y = f (x); и обратно, если прямая x = a есть асимптота, то выполняется одно из написанных равенств.

Следовательно, для отыскания вертикальных асимптот нужно найти такие значения x = a, при приближении к которым функция стремится к бесконечности. Тогда прямая x = a будет вертикальной асимптотой. Точкам x = a соответствуют разрывы функции f (x) второго рода. Например, кривая имеет вертикальную асимптоту x = с, так как ; (или ).

В точке x = с функция терпит разрыв второго рода (рис.26, а).

 

Горизонтальные асимптоты

Для того чтобы, например, при x → +∞, прямая y = d служила асимптотой для кривой f (x), очевидно (рис.26, b), необходимо и достаточно, чтобы было

или .

Таким образом, вопрос о горизонтальной асимптоте сводится попросту к вопросу об этом пределе.

Отдельно нужно искать подобный предел и при x →; при этом может получиться и другая асимптота. Например, в случае кривой f (x) = arctg x (рис.8) имеем: ; .

Следовательно, для кривой f (x) = arctg x,при x → +∞ асимптотой является прямая , а при x → – прямая (рис.8).

 

Наклонные асимптоты

Предположим, что кривая f (x) имеет наклонную асимптоту y = kx + d, например, со стороны положительной части оси (рис.26, c). Определим числа k и d. Так как разность ординат лишь постоянным множителем (равным косинусу угла между асимптотой и осью ) разнится от расстояния δ (, рис.26, с), то при x → +∞ одновременно с δ должна стремится к нулю и эта разность.

. (3.71)

Разделив на x, получим отсюда:

(так как ). (3.72)

Зная k, из равенства (3.71) находим d:

. (3.73)

Итак, для того чтобы прямая y = kx + d была асимптотой для данной кривой, необходимо выполнение условий (3.72) и (3.73). Обратное рассуждение покажет и их достаточность. Вопрос здесь сведется к последовательному разысканию пределов (3.72) и (3.73), которыми уже и определятся коэффициенты уравнения прямой y = kx + d, удовлетворяющей равенству (3.71) и, следовательно, обладающей свойством асимптоты.

Мы проводили исследования при x → +∞, но все рассуждения справедливы и при x → –∞. Поэтому для случая x → –∞ нужно повторить все исследование. При этом может получиться и другая асимптота по сравнению со случаем x → +∞. Например, в случае функции имеем при x → +∞

,

,

так что, со стороны положительных значений x, кривая приближается к асимптоте . Со стороны же отрицательных x получается другая асимптота . Действительно, при x → –∞ имеем

,

.

 


Поделиться с друзьями:

Биохимия спиртового брожения: Основу технологии получения пива составляет спиртовое брожение, - при котором сахар превращается...

Эмиссия газов от очистных сооружений канализации: В последние годы внимание мирового сообщества сосредоточено на экологических проблемах...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...

Автоматическое растормаживание колес: Тормозные устройства колес предназначены для уменьше­ния длины пробега и улучшения маневрирования ВС при...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.017 с.