Бесконечно малые и бесконечно большие. Теоремы о бесконечно малых. — КиберПедия 

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

Особенности сооружения опор в сложных условиях: Сооружение ВЛ в районах с суровыми климатическими и тяжелыми геологическими условиями...

Бесконечно малые и бесконечно большие. Теоремы о бесконечно малых.

2017-11-27 201
Бесконечно малые и бесконечно большие. Теоремы о бесконечно малых. 0.00 из 5.00 0 оценок
Заказать работу

Определение: Ф-цияf(x) назыв бесконечно малой, если её предел при х→а, равен 0

=0

или >0, >0. что

 

Свойства:

1) =Аó(f(x) - A) – б.м. при х→а. Следствие =А → f(x)=A+α, α -б.м.

2) α, β -б.м. → α + β= б.м.

3) α -б.м., у- ограниченная, α *у – б.м. Следствие: -

α*β- б.м., где α и β -б.м.

- С* α -б.м, где α -б.м. С - const

4) α/y –б.м. где α-б.м., lim y≠0

Определение: Ф-цияf(x) назыв бесконечно большой, если её предел при х→а, равен ∞

=∞

Теорема: (связь между б.м и б.б.)

у=f(x) – б.м. при х→а ó 1/f(x) – б.б. при х→а и наоборот.

 

Теоремы о пределах. Односторонние пределы.

Теорема 1: Пусть lim{x→a}f(x)=А и lim{x→a}g(x)=В, тогда 1)lim{x→a}(f(x)+g(x)) = А+В; 2)lim{x→a}(f(x)*g(x)) = А*В; 3)lim{x→a}(f(x)/g(x)) =А/В

Теорема 2: lim f1(x)= А1 lim f2(x) = А2, f1(x)<=f2(x), x D(f) => A1<A2

Теорема 3: lim f1(x)=А, lim f2(x) = А, f1(x)<f(x)<f2(x) => lim f(x) =A

Определение: если при вычислении предела lim{x→a}f(x) при х→а, Х остаётся всё время меньше (больше) а, то предел называется левым(правым) – оба односторонние.

Замечание: 1) Если сущ-ют и равны м/у собой односторонние пределы, то они равны пределу f(x), при х→а. 2) Если существует предел данной функции, то существует и его односторонние пределы.

Первый и второй замечательные пределы.

Первый замечательный предел

Доказательство

 

Рассмотрим односторонние пределы и и докажем, что они равны 1.

Пусть . Отложим этот угол на единичной окружности (R = 1).Точка K — точка пересечения луча с окружностью, а точка L — с касательной к единичной окружности в точке (1;0). Точка H — проекция точки K на ось OX. Очевидно, что:

(1)

(где SsectOKA — площадь сектора OKA)

(из : | LA | = tg x)

Подставляя в (1), получим:

Так как при :

Умножаем на sin x:

Перейдём к пределу:

Найдём левый односторонний предел:

 

 

Правый и левый односторонний пределы существуют и равны 1, а значит и сам предел равен 1.

Следствия

Второй замечательный предел

Доказательство второго замечательного предела:

Доказательство второго замечательного предела для случая последовательности (т.е. для натуральных значений x)

Докажем вначале теорему для случая последовательности

По формуле бинома Ньютона:

Полагая , получим:

(1)

Из данного равенства (1) следует, что с увеличением n число положительных слагаемых в правой части увеличивается. Кроме того, при увеличении n число убывет, поэтому величины возрастают. Поэтому последовательность возрастающая, при этом

(2).

Покажем, что она ограничена. Заменим каждую скобку в правой части равенства на единицу, правая часть увеличится, получим неравенство

Усилим полученное неравенство, заменим 3,4,5, …, стоящие в знаменателях дробей, числом 2:

.

Сумму в скобке найдем по формуле суммы членов геометрической прогрессии:

.

Поэтому (3).

Итак, последовательность ограничена сверху, при этом выполняются неравенства (2) и (3): .

Следовательно, на основании теоремы Вейерштрасса (критерий сходимости последовательности) последовательность монотонно возрастает и ограниченна, значит имеет предел, обозначаемый буквой e. Т.е.

Зная, что второй замечательный предел верен для натуральных значений x, докажем второй замечательный предел для вещественных x, т.е. докажем, что . Рассмотрим два случая:

1. Пусть . Каждое значение x заключено между двумя положительными целыми числами: , где n = [ x ] - это целая часть x.

Отсюда следует: , поэтому

.

Если , то . Поэтому, согласно пределу , имеем:

.

По признаку (о пределе промежуточной функции) существования пределов .

2. Пусть . Сделаем подстановку − x = t, тогда

.

Из двух этих случаев вытекает, что для любого x.

 

 


Поделиться с друзьями:

Состав сооружений: решетки и песколовки: Решетки – это первое устройство в схеме очистных сооружений. Они представляют...

История развития хранилищ для нефти: Первые склады нефти появились в XVII веке. Они представляли собой землянные ямы-амбара глубиной 4…5 м...

Организация стока поверхностных вод: Наибольшее количество влаги на земном шаре испаряется с поверхности морей и океанов (88‰)...

Папиллярные узоры пальцев рук - маркер спортивных способностей: дерматоглифические признаки формируются на 3-5 месяце беременности, не изменяются в течение жизни...



© cyberpedia.su 2017-2024 - Не является автором материалов. Исключительное право сохранено за автором текста.
Если вы не хотите, чтобы данный материал был у нас на сайте, перейдите по ссылке: Нарушение авторских прав. Мы поможем в написании вашей работы!

0.019 с.